Skip to main content

The Bounded Weak Monadic Quantifier Alternation Hierarchy of Equational Graphs Is Infinite

  • Conference paper
  • First Online:
FST TCS 2000: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1974))

  • 539 Accesses

Abstract

Here we deal with the question of definability of infinite graphs up to isomorphism by weakmo nadic second-order formulæ. In this respect, we prove that the quantifier alternation bounded hierarchy of equational graphs is infinite. Two proofs are given: the first one is based on the Ehrenfeucht-Fraissé games; the second one uses the arithmetical hierarchy. Next, we give a new proof of the Thomas’s result according to which the bounded hierarchy of the weakmo nadic second-order logic of the complete binary tree is infinite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R. Büchi, On a decision method in restricted second order arithmetic. Proc. Internat. Congr. on Logic, Methodology and Philosophy of Science, E. Nagel and al. eds. p1–11 (1960).

    Google Scholar 

  2. D. Caucal, On Infinite Transition Graphs having Decidable Monadic Theory, ICALP’96-LNCS 1099:194–205 (1996).

    Google Scholar 

  3. B. Courcelle, Fundamental Properties of Infinite Trees, TCS 25:95–169 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Courcelle, The monadic second-order logic of graphs II: Infinite Graphs of Bounded Width, Math. System Theory 21:187–221 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Courcelle, The monadic second-order logic of graphs IV: Definability properties of Equational Graphs, Annals of Pure and Applied Logic 49:193–255 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  6. Ebbinghaus H.-D and Flum J., Finite Model Theory, second edition, Springer Verlag (1999).

    Google Scholar 

  7. R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets. In “Complexity of Computation”, SIAM-AMS Proceedings 43–73 (1974).

    Google Scholar 

  8. Y. Gurevich, Monadic Second-Order Theories, in Model Theoretic Logic, Barwise and Ferferman eds. Springer (1985).

    Google Scholar 

  9. D. Janin and G. Lenzi, On the structure of the monadic logic of the binary tree. MFCS’99, LNCS 1672:310–320 (1999).

    Google Scholar 

  10. R. Lassaigne and M. de Rougemond, Logique et Complexité, Hermes-collection informatique (1996).

    Google Scholar 

  11. O. Ly, On Hierarchy of Graphs, internal report no 1178-97 LaBRI-1997.

    Google Scholar 

  12. R. McNaughton, Testing and Generating Infinite Sequences by a Finite Automaton, Inf. Contr. 9:521–530 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  13. A.W. Mostowski Hierarchies of Weak Monadic Formulas for Two Successors Arithmetic, J. Inf. Process. Cybern. EIK 23 10/11, 509–515 (1987).

    MATH  MathSciNet  Google Scholar 

  14. D.E. Muller and P.E. Schupp, The Theory of Ends, Pushdown Automata, and Second-Order Logic, TCS 37: 51–75 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  15. C.H. Papadimitriou, Computational Complexity, Addison-Wexley Pub. Comp. (1994).

    Google Scholar 

  16. D. Perrin and J. E. Pin, First-Order Logic and Star-Free Sets, J. Comp. Syst. Sci. 32:393–406 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  17. N. Robertson and P. Seymour, Some new results onWell-Quasi Ordering of Graphs. Annals of Discrete Math., 23:343–354 (1984).

    MathSciNet  Google Scholar 

  18. M.O. Rabin, Decidability of second order theories and automata on infinite trees, Trans. Amer. Math. Soc. 141 (1969).

    Google Scholar 

  19. M.O. Rabin, Weakly Definable Relations and Special Automata

    Google Scholar 

  20. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, Series in Higher Mathematics (1967).

    Google Scholar 

  21. G. Rozenberg ed., Handbookof Graph Grammars and Computing by Graph Transformation, vol. 1, World Scientific (1997).

    Google Scholar 

  22. G. Sénizergues, Définissabilité des graphes context-free, unpublished work.

    Google Scholar 

  23. G. Sénizergues, Definability in weakmo nadic second order logic of some infinite Graphs, Dagstuhl seminar on Automata theory: Infinite Computations 28:16–16 (1992).

    Google Scholar 

  24. W. Thomas, A Hierarchie of Sets of Infinite Trees, LNCS 145:335–342 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ly, O. (2000). The Bounded Weak Monadic Quantifier Alternation Hierarchy of Equational Graphs Is Infinite. In: Kapoor, S., Prasad, S. (eds) FST TCS 2000: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2000. Lecture Notes in Computer Science, vol 1974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44450-5_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-44450-5_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41413-1

  • Online ISBN: 978-3-540-44450-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics