Skip to main content

An Approximation Algorithm for MAX DICUT with Given Sizes of Parts

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1913))

Abstract

Given a directed graph G and an edge weight function w : E(G) → R+, the maximum directed cut problem (max dicut) is that of finding a directed cut δ(X) with maximum total weight. In this paper we consider a version of max dicut — max dicut with given sizes of parts or max dicut with gsp — whose instance is that of max dicut plus a positive integer p, and it is required to find a directed cut δ(X) having maximum weight over all cuts δ(X) with |X| = p. It is known that by using semidefinite programming rounding techniques max dicut can be well approximated — the best approximation with a factor of 0.859 is due to Feige and Goemans. Unfortunately, no similar approach is known to be applicable to max dicut with gsp. This paper presents an 0.5- approximation algorithm for solving the problem. The algorithm is based on exploiting structural properties of basic solutions to a linear relaxation in combination with the pipage rounding technique developed in some earlier papers by two of the authors.

Supported in part by the Russian Foundation for Basic Research, grant 99-01-00601.

Supported in part by the Russian Foundation for Basic Research, grant 99-01-00510.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. Ageev and M.I. Sviridenko, Approximation algorithms for Maximum Coverage and Max Cut with given sizes of parts, Lecture Notes in Computer Science (Proceedings of IPCO’99) 1610 (1999), 17–30.

    Google Scholar 

  2. A.A. Ageev and M.I. Sviridenko, An approximation algorithm for Hypergraph Max k-Cut with given sizes of parts, Lecture Notes in Computer Science (Proceedings of ESA’2000), to appear.

    Google Scholar 

  3. U. Feige and M.X. Goemans, Approximating the value of two prover proof systems, with applications to MAX 2SAT and MAX DICUT, Proceedings of the Third Israel Symposium on Theory of Computing and Systems (1995), 182–189.

    Google Scholar 

  4. U. Feige and M. Langberg, Approximation algorithms for maximization problems arising in graph partitioning, manuscript, 1999.

    Google Scholar 

  5. M. X. Goemans and D. P. Williamson, Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming, J. ACM 42 (1995), 1115–1145.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Jain, A factor 2 approximation algorithm for the generalized Steiner network problem, Proceedings of FOCS’98 (1998), 448–457.

    Google Scholar 

  7. V. Melkonian and É. Tardos, Approximation algorithms for a directed network design problem, Lecture Notes in Computer Science (Proceedings of IPCO’99) 1610 (1999), 345–360.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ageev, A., Hassin, R., Sviridenko, M. (2000). An Approximation Algorithm for MAX DICUT with Given Sizes of Parts. In: Jansen, K., Khuller, S. (eds) Approximation Algorithms for Combinatorial Optimization. APPROX 2000. Lecture Notes in Computer Science, vol 1913. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44436-X_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-44436-X_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67996-7

  • Online ISBN: 978-3-540-44436-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics