Skip to main content

Molecular Machines and Motors Based on Transition Metal-Containing Catenanes and Rotaxanes

  • Chapter
  • First Online:
Molecular Machines and Motors

Part of the book series: Structure and Bonding ((STRUCTURE,volume 99))

Abstract

Molecular motors of various kind (linear, rotary) are very common in biology where they play an essential role. However, the number of synthetic molecular ensembles whose dynamic behavior is reminiscent of biological motors is presently very limited. In order for an object to be regarded as a motor, several basic requirements have to be fulfilled. Even without trying to apply a strict thermodynamic definition, the system will have to convert a certain type of energy into another form of energy, while undergoing some kind of continuous motion. Threaded or interlocked rings are ideally suited to the construction of fully artificial molecular motors. If a ring is threaded onto a rod, it can either rotate around the axle or undergo a translation movement. Similarly, in catenanes, a ring can glide at will within another ring. Several examples of such compounds have been elaborated and studied in recent years, using threaded and interlocked molecules either based on acceptor-donor and hydrogen-bonded complexes or on transition metal complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shenck HL, Dada GP, Gellman SH (1996) J Am Chem Soc 118: 12487

    Article  Google Scholar 

  2. Dado GP, Gellman SH (1993) J Am Chem Soc 115: 12609

    Article  Google Scholar 

  3. Bixler J, Bakker G, McLendon G (1992) J Am Chem Soc 114: 6938

    Article  Google Scholar 

  4. Thirumalai D, Woodson SA (1996) Acc Chem Res 29: 433

    Article  Google Scholar 

  5. Pascher T, Chesick JP, Winkler JR, Gray HB (1996) Science 271: 1858

    Article  Google Scholar 

  6. Kitamura K, Tokunaga M, Iwane AH, Yanagida T (1999) Nature 397: 129

    Article  ADS  Google Scholar 

  7. Rayment I, Holden HM, Whittaker M et al. (1993) Science 261: 58

    Article  ADS  Google Scholar 

  8. Rayment I, Rypniewski WR, Schmidt-Bäse K et al. (1993) Science 261: 50

    Article  ADS  Google Scholar 

  9. Dobbie I, Linari M, Piazzesi G et al. (1998) Nature 396: 383

    Article  ADS  Google Scholar 

  10. Elston T, Wang H, Oster G (1998) Nature 391: 510

    Article  ADS  Google Scholar 

  11. Koumura N, Ziljstra RWJ, Delden RAv, Harada N, Feringa BL (1999) Nature 401: 152

    Article  ADS  Google Scholar 

  12. Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Nature 370: 621

    Article  ADS  Google Scholar 

  13. Noji H, Yasuda R, Yoshida M, Kinosita K (1997) Nature 386: 299

    Article  ADS  Google Scholar 

  14. Walker JE (1998) Angew Chem Int Ed 37: 2308

    Article  Google Scholar 

  15. Allison WS (1998) Ace Chem Res 31: 819

    Article  Google Scholar 

  16. Boyer PD (1998) Angew Chem Int Ed 37: 2296

    Article  Google Scholar 

  17. Philp D (1996) Angew Chem Int Ed Engl 35: 1154

    Article  Google Scholar 

  18. Livoreil A, Dietrich-Buchecker C, Sauvage J-P (1994) J Am Chem Soc 116: 9399

    Article  Google Scholar 

  19. Livoreil A, Sauvage J-P, Armaroli N, Balzani V, Flamigni L, Venturi B (1997) J Am Chem Soc 119: 12114

    Article  Google Scholar 

  20. Ashton PR, Ballardini R, Balzani V et al. (1995) J Am Chem Soc 117: 11171

    Article  Google Scholar 

  21. Ashton PR, Ballardini R, Balzani V et al. (1997) Chem Eur J 3: 152

    Article  Google Scholar 

  22. Credi A, Balzani V, Langford SJ, Stoddart JF (1997) J Am Chem Soc 119: 2679

    Article  Google Scholar 

  23. Ballardini R, Balzani V, Gandolfi MT et al. (1993) Angew Chem Int Ed Engl 32: 1301

    Article  Google Scholar 

  24. Bissel RA, Crdova E, Kaifer AE, Stoddart JF (1994) Nature 369: 133

    Article  ADS  Google Scholar 

  25. Geiger WE (1979) J Am Chem Soc 101: 3407

    Article  Google Scholar 

  26. Bernardo MM, Robandt PV, Schroeder RR, Rorabacher DB (1989) J Am Chem Soc 111: 1224

    Article  Google Scholar 

  27. Katz NE, Fagalde F (1993) Inorg Chem 32: 5391

    Article  Google Scholar 

  28. Moraczewski J, Sassano CA, Mirkin CA (1995) J Am Chem Soc 117: 11379

    Article  Google Scholar 

  29. Singewald ET, Mirkin CA, Stern CL (1995) Angew Chem Int Ed Engl 34: 1624

    Article  Google Scholar 

  30. Wytko JA, Boudon C, Weiss J, Gross M (1996) Inorg Chem 35: 4469

    Article  Google Scholar 

  31. Chin TT, Geiger WE, Rheingold AL (1996) J Am Chem Soc 118: 5002

    Article  Google Scholar 

  32. Sano M, Taube H (1991) J Am Chem Soc 113: 2327

    Article  Google Scholar 

  33. Sano M, Taube H (1994) Inorg Chem 33: 705

    Article  Google Scholar 

  34. Sano M, Sago H, Tomita A (1996) Bull Chem Soc Jpn 69: 977

    Article  Google Scholar 

  35. Tomita A, Sano M (1994) Inorg Chem 33: 5825

    Article  Google Scholar 

  36. Tomita A, Sano M (1996) Chem Lett 981

    Google Scholar 

  37. Zelikovich L, Libman J, Shanzer A (1995) Nature 790

    Google Scholar 

  38. Canevet C, Libman J, Shanzer A (1996) Angew Chem Int Ed Engl 35: 2657

    Article  Google Scholar 

  39. Chambron J-C, Dietrich-Buchecker CO, Nierengarten J-F, Sauvage J-P (1993) New J Chem 17: 331

    Google Scholar 

  40. Chambron J-C, Dietrich-Buchecker CO, Nierengarten J-F et al. (1995) New J Chem 19: 409

    Google Scholar 

  41. Amabilino DB, Dietrich-Buchecker CO, Sauvage J-P (1996) J Am Chem Soc 118: 3285

    Article  Google Scholar 

  42. Gavina P, Sauvage J-P (1997) Tetrahedron Lett 38: 3521

    Article  Google Scholar 

  43. Collin J-P, Gavina P, Sauvage J-P (1996) Chem Commun 2005

    Google Scholar 

  44. Collin J-P, Gavina P, Sauvage J-P (1997) New J Chem 21: 525

    Google Scholar 

  45. Cardenas DJ, Livoreil A, Sauvage J-P (1996) J Am Chem Soc 118: 11980

    Article  Google Scholar 

  46. Dietrich-Buchecker C, Sauvage J-P (1990) Tetrahedron 46: 503

    Article  Google Scholar 

  47. Dietrich-Buchecker C, Kern J-M, Sauvage J-P (1989) J Am Chem Soc 111: 7791

    Article  Google Scholar 

  48. Federlin P, Kern J-M, Rastegar A, Dietrich-Buchecker C, Marnot PA, Sauvage J-P (1990) New J Chem 14: 9

    Google Scholar 

  49. Nicholson RS, Shain I (1964) Anal Chem 36: 706

    Article  Google Scholar 

  50. Harris CM, Lockyer TN (1970) Aust J Chem 23: 673

    Article  Google Scholar 

  51. Arena G, Bonmo RP, Musumeci S, Purello R, Rizarelli E, Sammartanos S (1983) J Chem Soc Dalton Trans 1279

    Google Scholar 

  52. Hasenknopf B, Lehn J-M, Baum G, Fenske D (1996) Proc Natl Acad sci USA 93: 1397

    Article  ADS  Google Scholar 

  53. Sanni SB, Behm HJ, Beurskens PT et al. (1988) J Chem Soc Dalton Trans 1429

    Google Scholar 

  54. Goodwin JA, Stanbury DM, Wilson LJ, Eigenbrot CW, Scheidt WR (1987) J Am Chem Soc 109: 2979

    Article  Google Scholar 

  55. Goodwin JA, Bodager GA, Wilson LJ, Stanbury DM, Scheidt WR (1989) Inorg Chem 28: 35

    Article  Google Scholar 

  56. Baumann F, Livoreil A, Kaim W, Sauvage J-P (1997) J Chem Soc Chem Commun 35

    Google Scholar 

  57. Drexler KE (1992) Nanosystems, molecular machinery, manufacturing and computation, Wiley, New York

    Google Scholar 

  58. Ikeda A, Tsudera T, Shinkai S (1997) J Org Chem 62: 3568

    Article  Google Scholar 

  59. Urry DW (1993) Angew. Chem Int Ed Engl 32: 819

    Article  Google Scholar 

  60. Dietrich-Buchecker C, Sauvage J-P (1983) Tetrahedron Lett 24: 5091

    Article  Google Scholar 

  61. Dietrich-Buchecker C, Sauvage J-P, Kintzinger J-P (1983) Tetrahedron Lett 24: 5095

    Article  Google Scholar 

  62. Dietrich-Buchecker C, Sauvage J-P, Kern J-M (1984) J Am Chem Soc 106: 3043

    Article  Google Scholar 

  63. Wasserman E (1960) J Am Chem Soc 82: 4433

    Article  Google Scholar 

  64. Schill G (1971) Catenanes, Rotaxanes and Knots, Academic Press, New York

    Google Scholar 

  65. Harrison IT, Harrison S (1967) J Am Chem Soc 89: 5723

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raehm, L., Sauvage, JP. (2001). Molecular Machines and Motors Based on Transition Metal-Containing Catenanes and Rotaxanes. In: Sauvage, JP., et al. Molecular Machines and Motors. Structure and Bonding, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44421-1_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-44421-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41382-0

  • Online ISBN: 978-3-540-44421-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics