The Incompressibility Method

  • Tao Jiang
  • Ming Li
  • Paul Vitányi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1963)


Kolmogorov complexity is a modern notion of randomness dealing with the quantity of information in individual objects; that is, pointwise randomness rather than average randomness as produced by a random source. It was proposed by A. N. Kolmogorov in 1965 to quantify the randomness of individual objects in an objective and absolute manner. This is impossible for classical probability theory. Kolmogorov complexity is known variously as ‘algorithmic information’, ‘algorithmic entropy’, ‘Kolmogorov-Chaitin complexity’, ‘descriptional complexity’, ‘shortest program length’, ‘algorithmic randomness’, and others. Using it, we developed a new mathematical proof technique, now known as the ‘incompressibility method’. The incompressibility method is a basic general technique such as the ‘pigeon hole’ argument, ‘the counting method’ or the ‘probabilistic method’. The new method has been quite successful and we present recent examples. The first example concerns a “static” problem in combinatorial geometry. From among (n 3) triangles with vertices chosen from among n points in the unit square, U, let T be the one with the smallest area, and let A be the area of T. Heilbronn’s triangle problem asks for the maximum value assumed by A over all choices of n points. We consider the average-case: If the n points are chosen independently and at random (uniform distribution) then there exist positive c and C such that c/n 3 < µn < C/n 3 for all large enough n, where µn is the expectation of A. Moreover, c/n 3 <A < C/n 3 for almost all A, that is, almost all A are close to the expectation value so that we determine the area of the smallest triangle for an arrangement in “general position”. Our second example concerns a “dynamic” problem in average-case running time of algorithms. The question of a nontrivial general lower bound (or upper bound) on the average-case complexity of Shellsort has been open for about forty years. We obtain the first such lower bound.


Grid Point Binary String Grid Line Kolmogorov Complexity Small Triangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Barequet, A lower bound for Heilbronn’s triangle problem in d dimensions. In: Proc. 10th ACM-SIAM Symp. Discrete Algorithms, 1999, 76–81. 40, 41Google Scholar
  2. 2.
    A. Berthiaume, W. van Dam, S. Laplante, Quantum Kolmogorov complexity, Proc. 15th IEEE Computational Complexity Conference, 2000, 240–249. 37Google Scholar
  3. 3.
    J. Beck, Almost collinear triples among N points on the plane, in A Tribute to Paul Erdős, ed. A. Baker, B. Bollobas and A. Hajnal, Cambridge Univ. Press, 1990, pp. 39–57. 40Google Scholar
  4. 4.
    C. Bertram-Kretzberg, T. Hofmeister, H. Lefmann, An algorithm for Heilbronn’s problem, Proc. 3rd Ann. Conf. Comput. and Combinatorics, T. Jiang and D. T. Lee (Eds), 1997, pp. 23–31. 40Google Scholar
  5. 5.
    H. Buhrman, T. Jiang, M. Li, and P. Vitányi, New applications of the incompressibility method, pp. 220–229 in the Proceedings of ICALP’99, LNCS 1644, Springer-Verlag, Berlin, 1999.Google Scholar
  6. 6.
    G. Cairns, M. McIntyre, and J. Strantzen, Geometric proofs of some recent results of Yang Lu, Math. Magazine, 66(1993), 263–265. 40zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    P. Erdős, Problems and results in combinatorial geometry, In: Discrete Geometry and Convexity, Annals of the New York Academy of Sciences, 440(1985), 1–11. 40Google Scholar
  8. 8.
    P. Erdős and G. Purdy, Extremal problems in combinatorial theory, In: Handbook of Combinatorics, R. L. Graham, M. Grötschel, L. Lovász, Eds., Elsevier/MIT Press, 1995, pp. 861–862. 40Google Scholar
  9. 9.
    M. Goldberg, Maximizing the smallest triangle made by N points in a square, Math. Magazine, 45(1972), 135–144. 40zbMATHCrossRefGoogle Scholar
  10. 10.
    R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer-Verlag 1994, pp. 242–244. 40Google Scholar
  11. 11.
    J. Incerpi and R. Sedgewick, Improved upper bounds on Shellsort, Journal of Computer and System Sciences, 31(1985), 210–224. 47zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Janson and D. E. Knuth, Shellsort with three increments, Random Struct. Alg., 10(1997), 125–142. 47, 51zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    T. Jiang, M. Li, and P. Vitányi, New applications of the incompressibility method II, Theoretical Computer Science, 235:1(2000), 59–70.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    T. Jiang, M. Li, and P. Vitányi, The average-case complexity of Shellsort, Preliminary version, pp. 453–462 in the Proceedings of ICALP’99, LNCS 1644, Springer-Verlag, Berlin, 1999. Also: J. Assoc. Comput. Mach., to appear. 37, 51Google Scholar
  15. 15.
    T. Jiang, M. Li, and P. M. B. Vitányi, The Expected Size of Heilbronn’s Triangles, Proc. 14th IEEE Computational Complexity Conference, 1999, 105–113. 37Google Scholar
  16. 16.
    D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley, 1973(1st Edition), 1998 (2nd Edition). 47, 51Google Scholar
  17. 17.
    A. N. Kolmogorov, Three approaches to the quantitative definition of information. Problems Inform. Transmission, 1(1):1–7, 1965. 38MathSciNetGoogle Scholar
  18. 18.
    J. Komlós, J. Pintz, and E. Szemerédi, On Heilbronn’s triangle problem, J. London Math. Soc., (2) 24(1981), 385–396. 40, 46zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    J. Komlós, J. Pintz, and E. Szemerédi, A lower bound for Heilbronn’s problem, J. London Math. Soc., 25(1982), 13–24. 40zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    M. Li and P. M. B. Vitányi, An Introduction to Kolmogorov Complexity and its Applications, Springer-Verlag, New York, 2nd Edition, 1997. 37, 39, 41, 49zbMATHGoogle Scholar
  21. 21.
    M. Nielsen, I. Huang, Quantum Computation and Quantum Information, Cambridge University Press, 2000. 37Google Scholar
  22. 22.
    D. Mackenzie, On a roll, New Scientist, November 6, 1999, 44–48. 37, 41Google Scholar
  23. 23.
    W. Blum, Geometrisch Eingekreist, Die Zeit, April 13, 2000 (#16), p. 40. 37Google Scholar
  24. 24.
    D. Mackenzie, Le hasard ne joue pas aux de’s, Courrier International, December 23, 1999–January 5, 2000 (#41), p. 477–478. 37Google Scholar
  25. 25.
    A. M. Odlyzko, J. Pintz, and K. B. Stolarsky, Partitions of planar sets into small triangles, Discrete Math., 57(1985), 89–97. 40zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    A. Papernov and G. Stasevich, A method for information sorting in computer memories, Problems Inform. Transmission, 1:3(1965), 63–75. 47Google Scholar
  27. 27.
    C. G. Plaxton, B. Poonen and T. Suel, Improved lower bounds for Shellsort, Proc. 33rd IEEE Symp. Foundat. Comput. Sci., pp. 226–235, 1992. 47, 51Google Scholar
  28. 28.
    V. R. Pratt, Shellsort and Sorting Networks, Ph.D. Thesis, Stanford Univ., 1972. 47Google Scholar
  29. 29.
    K. F. Roth, On a problem of Heilbronn, J. London Math Society, 26(1951), 198–204. 40, 41zbMATHCrossRefGoogle Scholar
  30. 30.
    K. F. Roth, On a problem of Heilbronn II, Proc. London Math Society, (3) 25(1972), 193–212. 40zbMATHCrossRefGoogle Scholar
  31. 31.
    K. F. Roth, On a problem of Heilbronn III, Proc. London Math Society, (3) 25(1972), 543–549. 40zbMATHCrossRefGoogle Scholar
  32. 32.
    K. F. Roth, Estimation of the area of the smallest triangle obtained by selecting three out of n points in a disc of unit area, Proc. Symp. Pure Mathematics 24, AMS, Providence, 1973, pp. 251–262. 40Google Scholar
  33. 33.
    K. F. Roth, Developments in Heilbronn’s triangle problem, Advances in Math. 22(1976), 364–385. 40zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    W. M. Schmidt, On a problem of Heilbronn, J. London Math. Soc., (2) 4(1972), 545–550. 40zbMATHCrossRefGoogle Scholar
  35. 35.
    R. Sedgewick, Analysis of Shellsort and related algorithms, Proc. 4th Annual European Symposium on Algorithms, Lecture Notes in Computer Science, Vol. 1136, Springer-Verlag, Berlin, 1–11. 47Google Scholar
  36. 36.
    R. Sedgewick, Open problems in the analysis of sorting and searching algorithms, Presented at Workshop on Prob. Analysis of Algorithms, Princeton, 1997 (http://www.cs.princeton/). 47, 51
  37. 37.
    D. L. Shell, A high-speed sorting procedure, Commun. ACM, 2:7(1959), 30–32. 47CrossRefGoogle Scholar
  38. 38.
    Tian Zheng Ping, On the problem of Heilbronn type, Northeast. Math. J., 10(1994), 215–216. 40MathSciNetGoogle Scholar
  39. 39.
    L. Yang, J. Z. Zhang, and Z. B. Zeng, Heilbronn problem for five points, Int’l Centre Theoret. Physics preprint IC/91/252 (1991). 40Google Scholar
  40. 40.
    L. Yang, J. Z. Zhang, and Z. B. Zeng, A conjecture on the first several Heilbronn numbers and a computation, Chinese Ann. Math. Ser. A 13(1992) 503–515. 40zbMATHMathSciNetGoogle Scholar
  41. 41.
    L. Yang, J. Z. Zhang, and Z. B. Zeng, On the Heilbronn numbers of triangular regions, Acta Math. Sinica, 37(1994), 678–689. 40zbMATHMathSciNetGoogle Scholar
  42. 42.
    P. Vitányi, Three approaches to the quantitative definition of information in an individual pure quantum state, Proc. 15th IEEE Computational Complexity Conference, 2000, 263–270. 37Google Scholar
  43. 43.
    A. C. C. Yao, An analysis of (h, k, 1)-Shellsort, J. of Algorithms, 1(1980), 14–50. 47zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Tao Jiang
    • 1
  • Ming Li
    • 2
  • Paul Vitányi
    • 3
  1. 1.Department of Computer ScienceUniversity of CaliforniaRiversideUSA
  2. 2.Computer Science DepartmentUniversity of CaliforniaSanta BarbaraUSA
  3. 3.CWI and University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations