Advertisement

Massively Parallel Pattern Recognition with Link Failures

  • Martin Kutrib
  • Jan-Thomas Löwe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1963)

Abstract

The capabilities of reliable computations in linear cellular arrays with communication failures are investigated in terms of syntactical pattern recognition.

In particular we consider very fast, i. e. real-time, computations. It is wellknown that real-time one-way arrays are strictly less powerful than realtime two-way arrays. Here it is shown that the sets of patterns reliably recognizable by real-time arrays with link failures are strictly in between the sets of (intact) one-way and (intact) two-way arrays. Hence, the failures cannot be compensated in general but, on the other hand, do not decrease the computing power to that one of one-way arrays.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bucher, W. and Čulik II, K. On real time and linear time cellular automata. RAIRO Inform. Théor. 18 (1984), 307–325. 396zbMATHMathSciNetGoogle Scholar
  2. 2.
    Buchholz, Th. and Kutrib, M. Some relations between massively parallel arrays. Parallel Comput. 23 (1997), 1643–1662. 396CrossRefMathSciNetGoogle Scholar
  3. 3.
    Gács, P. Reliable computation with cellular automata. J. Comput. System Sci. 32 (1986), 15–78. 392zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gács, P. and Reif, J. A simple three-dimensional real-time reliable cellular array. J. Comput. System Sci. 36 (1988), 125-147. 392Google Scholar
  5. 5.
    Harao, M. and Noguchi, S. Fault tolerant cellular automata. J. Comput. System Sci. 11 (1975), 171–185. 393zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jiang, T. The synchronization of nonuniform networks of finite automata. Inform. Comput. 97 (1992), 234–261. 393zbMATHCrossRefGoogle Scholar
  7. 7.
    Kutrib, M. Pushdown cellular automata. Theoret. Comput. Sci. 215 (1999), 239–261. 398zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kutrib, M. and Löwe, J.-T. Fault tolerant parallel pattern recognition. Cellular Automata for Research and Industry (ACRI 2000), 2000, to appear. 393Google Scholar
  9. 9.
    Kutrib, M. and Löwe, J.-T. Massively parallel pattern recognition with link failures. Research Report 0003, Institut für Informatik, Universität Giessen, Giessen, 2000. 397Google Scholar
  10. 10.
    Kutrib, M. and Vollmar, R. Minimal time synchronization in restricted defective cellular automata. J. Inform. Process. Cybern. EIK 27 (1991), 179–196. 393zbMATHGoogle Scholar
  11. 11.
    Kutrib, M. and Vollmar, R. The firing squad synchronization problem in defective cellular automata. IEICE Transactions on Information and Systems E78-D (1995), 895–900. 393Google Scholar
  12. 12.
    Mazoyer, J. Synchronization of a line of finite automata with nonuniform delays. Research Report TR 94-49, Ecole Normale Supérieure de Lyon, Lyon, 1994. 393Google Scholar
  13. 13.
    Mazoyer, J. and Terrier, V. Signals in one dimensional cellular automata. Theoret. Comput. Sci. 217 (1999), 53–80. 396zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Nishio, H. and Kobuchi, Y. Fault tolerant cellular spaces. J. Comput. System Sci. 11 (1975), 150–170. 393zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Terrier, V. Language not recognizable in real time by one-way cellular automata. Theoret. Comput. Sci. 156 (1996), 281–287. 399, 400zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Umeo, H. A fault-tolerant scheme for optimum-time firing squad synchronization. Parallel Computing: Trends and Applications, 1994, 223–230. 393, 395Google Scholar
  17. 17.
    von Neumann, J. Probabilistic logics and the synthesis of reliable organisms from unreliable components. Automata Studies, Princeton University Press 34 (1956), 43–98. 392Google Scholar
  18. 18.
    Yunès, J.-B. Fault tolerant solutions to the firing squad synchronization problem. Technical Report LITP 96/06, Institut Blaise Pascal, Paris, 1996. 393Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Martin Kutrib
    • 1
  • Jan-Thomas Löwe
    • 1
  1. 1.Institute of InformaticsUniversity of GiessenGiessenGermany

Personalised recommendations