Advertisement

Quantum Pushdown Automata

  • Marats Golovkins
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1963)

Abstract

Quantum finite automata, as well as quantum pushdown automata were first introduced by C. Moore, J. P. Crutchfield [13]. In this paper we introduce the notion of quantum pushdown automata (QPA) in a non-equivalent way, including unitarity criteria, by using the definition of quantum finite automata of [11]. It is established that the unitarity criteria of QPA are not equivalent to the corresponding unitarity criteria of quantum Turing machines [4]. We show that QPA can recognize every regular language. Finally we present some simple languages recognized by QPA, two of them are not recognizable by deterministic pushdown automata and one seems to be not recognizable by probabilistic pushdown automata as well.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ambainis, R. Bonner, R. Freivalds, M. Golovkins, M. Karpinski: Quantum Finite Multitape Automata. Lecture Notes in Computer Science, 1999, Vol. 1725, pp. 340–348. 345Google Scholar
  2. 2.
    A. Ambainis, R. Bonner, R. Freivalds, A. Kikusts: Probabilities to Accept Languages by Quantum Finite Automata. Lecture Notes in Computer Science, 1999, Vol. 1627, pp. 174–183. 337Google Scholar
  3. 3.
    A. Ambainis, R. Freivalds: 1-Way Quantum Finite Automata: Strengths, Weaknesses and Generalizations. Proc. 39th FOCS, 1998, pp. 332–341. 337Google Scholar
  4. 4.
    E. Bernstein, U. Vazirani: Quantum Complexity Theory. SIAM Journal on Computing, 26:1411–1473, 1997. 336, 340zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. Brodsky, N. Pippenger: Characterizations of 1-Way Quantum Finite Automata. http://xxx.lanl.gov/abs/quant-ph/9903014. 337
  6. 6.
    D. Deutsch: Quantum Theory, the Church-Turing principle and the Universal Quantum Computer. Proc. Royal Society London, A400, 1985. pp. 96–117. 336Google Scholar
  7. 7.
    C. Dürr, M. Santha: A Decision Procedure for Unitary Linear Quantum Cellular Automata. Proc. 37th FOCS, 1996, pp. 38–45. 337Google Scholar
  8. 8.
    R. Feynman: Simulating Physics with Computers. International Journal of Theoretical Physics, 1982, vol. 21, No 6/7, pp. 467–488. 336CrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Gruska: Quantum Challenges. Lecture Notes in Computer Science, 1999, Vol. 1725, pp. 1–28. 336Google Scholar
  10. 10.
    E. Gurari: An Introduction to the Theory of Computation. Computer Science Press, 1989. 338, 344Google Scholar
  11. 11.
    A. Kondacs, J. Watrous: On The Power of Quantum Finite State Automata. In Proc. 38th FOCS, 1997, pp. 66–75. 336, 337, 343Google Scholar
  12. 12.
    M. Kravtsev: Quantum Finite One-Counter Automata. Lecture Notes in Computer Science, 1999, Vol. 1725, pp. 431–440. 344Google Scholar
  13. 13.
    C. Moore, J. P. Crutchfield: Quantum Automata and Quantum Grammars. http://xxx.lanl.gov/abs/quant-ph/9707031. 336, 337
  14. 14.
    P. W. Shor: Algorithms for Quantum Computation: Discrete Logarithms and Factoring. Proc. 35th FOCS, 1994, pp. 124–134. 336Google Scholar
  15. 15.
    M. Valdats: The Class of Languages Recognizable by 1-Way Quantum Finite Automata is not Closed Under Union. Proc. Quantum Computation and Learning. International Workshop, 2000, pp. 52–64. E-print: http://xxx.lanl.gov/abs/quantph/0001005. 337

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Marats Golovkins
    • 1
  1. 1.Institute of Mathematics and Computer ScienceUniversity of LatviaRigaLatvia

Personalised recommendations