Advertisement

Information Mining: Applications in Image Processing

  • Rudolf Kruse
  • Aljoscha Klose
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1963)

Abstract

In response to an explosive growth of collected, stored, and transferred data, Data Mining has emerged as a new research area. However, the approaches studied in this area are mostly specialized to analyze precise and highly structured data. Other sources of information— for instance images—have often been neglected. The term Information Mining wants to emphasize the need for methods suited for more heterogeneous and imprecise information sources. We also claim the importance of fuzzy set methods to meet the prominent aim of to producing comprehensible results. Two case studies of applying information mining techniques to remotely sensed image data are presented.

Keywords

Fuzzy System Fuzzy Rule Synthetic Aperture Radar Linguistic Term Pruning Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bandemer and W. Näther. Fuzzy Data Analysis. Mathematical and Statistical Methods. Kluwer, Dordrecht, 1992. 269Google Scholar
  2. 2.
    M. Berhold and K.-P. Huber. Tolerating missing values in a fuzzy environment. In Mares, Mesiar, Novak, and Ramik, editors, Proc. 7th International Fuzzy Systems Association World Congress IFSA’97, pages 359–362. Academia, Prag, 1997. 274Google Scholar
  3. 3.
    P. Chapman, J. Clinton, T. Khabaza, T. Reinartz, and R. Wirth. The CRISP-DM process model, 1999. available from http://www.crisp-dm.org/. 267
  4. 4.
    A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistic Society, 1(39):1–38, 1997. 274Google Scholar
  5. 5.
    D. Dubois, H. Prade, and R. R. Yager. Information engineering and fuzzy logic. In Proc. 5th IEEE International Conference on Fuzzy Systems FUZZ-IEEE’96, New Orleans, LA, pages 1525–1531. IEEE Press, Piscataway, NJ, 1996. 269Google Scholar
  6. 6.
    E. Falkenauer. The grouping genetic algorithms-widening the scope of the GAs. Belgian Journal of Operations Research, Statistics and Computer Science, 33:79–102, 1993. 279zbMATHGoogle Scholar
  7. 7.
    C. Faloutsos, R. Barber, M. Flickner, W. Niblack, D. Petkovic, and W. Equitz. Efficient and effective querying by image content. J. of Intelligent Information Systems, 3(3/4):231–262, 1994. 270CrossRefGoogle Scholar
  8. 8.
    U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining. AAAI Press / MIT Press, Cambridge, MA, 1996. 267, 268, 270Google Scholar
  9. 9.
    U. Fayyad and P. Smyth, editors. Image Database Exploration: Progress and Challenges. AAAI Press, Menlo Park, CA, 1993. 270Google Scholar
  10. 10.
    D. Florescu, A. Levy, and A. Mendelzon. Database techniques for the world-wide web: A survey. SIGMOD Record, 27(3):59–74, 1998. 270CrossRefGoogle Scholar
  11. 11.
    S. Gibson, O. Kosheleva, L. Longpre, B. Penn, and S. A. Starks. An optimal FFTbased algorithm for mosaicing images, with applications to satellite imaging and web search. In Proc. 5th Joint Conference on Information Sciences JCIS 2000, pages 248–251, 2000. 270Google Scholar
  12. 12.
    D. E. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison Wesley, Reading, MA, 1989. 279zbMATHGoogle Scholar
  13. 13.
    D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic algorithms. In G. Rawlins, editor, Foundations of Genetic Algorithms. Morgan Kaufmann, 1991. 280Google Scholar
  14. 14.
    J. F. Hair, R. E. Anderson, R. L. Tatham, and W. C. Black. Multivariate Data Analysis, Fifth Edition. Prentice-Hall, Upper Saddle River, NJ, 1998. 274Google Scholar
  15. 15.
    J. H. Holland. Adaptation in natural and artificial Systems. The University of Michigan Press, Ann Arbor, MI, 1975. 279Google Scholar
  16. 16.
    A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs, NJ, 1988. 278, 279zbMATHGoogle Scholar
  17. 17.
    D. R. Jones and M. A. Beltramo. Solving partitioning problems with genetic algorithms. In R. Belew and L. Booker, editors, Proc. 4th Intl. Conf. Genetic Algorithms, Morgan Kaufmann, Los Altos, CA, 1991. 279Google Scholar
  18. 18.
    S. Khuri, T. Bäck, and J. Heitkötter. An evolutionary approach to combinatorial optimization problems. In Proc. 22nd Annual ACM Computer Science Conference CSC’94, pages 66–73, Phoenix, 1994. ACM Press, New York. 279, 280Google Scholar
  19. 19.
    G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice Hall, Englewood Cliffs, NJ, 1995. 281zbMATHGoogle Scholar
  20. 20.
    A. Klose, R. Kruse, H. Gross, and U. Thönnessen. Tuning on the fly of structural image analysis algorithms using data mining. In Priddy, Keller, and Fogel, editors, Applications and Science of Computational Intelligence III, Proc. SPIE AeroSense’00, Orlando, FL, pages 311–321. SPIE Press, 2000. 278Google Scholar
  21. 21.
    A. Klose, R. Kruse, K. Schulz, and U. Thönnessen. Controlling asymmetric errors in neuro-fuzzy classiffication. In Proc. ACM SAC’00. ACM Press, 2000. 271, 275Google Scholar
  22. 22.
    A. Klose and A. Nürnberger. Applying boolean transformations to fuzzy rule bases. In Proc. EUFIT’99, 1999. 274Google Scholar
  23. 23.
    A. Klose, A. Nürnberger, and D. Nauck. Some approaches to improve the interpretability of neuro-fuzzy classiffiers. In Proc. EUFIT’98, pages 629–633, 1998. 274Google Scholar
  24. 24.
    R. Kruse, C. Borgelt, and D. Nauck. Fuzzy data analysis: Challenges and perspectives. In Proc. 8th IEEE International Conference on Fuzzy Systems FUZZIEEE’ 99, Seoul, Korea. IEEE Press, Piscataway, NJ, 1999. 268, 269Google Scholar
  25. 25.
    R. Kruse, J. Gebhardt, and F. Klawonn. Foundations of Fuzzy Systems. Wiley, Chichester, 1994. 269Google Scholar
  26. 26.
    T. V. Le. Fuzzy evolutionary programming for image processing. In Proc. Int. Conf. on Intelligent Processing and Manufacturing of Materials, pages 497–503, Gold Coast, Australia, 1997. 279Google Scholar
  27. 27.
    M. Mitchell. An introduction to genetic algorithms. MIT Press, Cambridge, MA, 1998. 279, 280zbMATHGoogle Scholar
  28. 28.
    T. M. Mitchell. Machine Learning. McGraw-Hill, New York, NY, 1997. 274zbMATHGoogle Scholar
  29. 29.
    D. Nauck, F. Klawonn, and R. Kruse. Foundations of Neuro-Fuzzy Systems. Wiley, Chichester, 1997. 269, 272, 274Google Scholar
  30. 30.
    D. Nauck and R. Kruse. Fuzzy classification rules using categorical and metric variables. In Proc. 6th Int. Workshop on Fuzzy-Neuro Systems FNS’99. Leipziger Universitätsverlag, Leipzig, 1999. 273Google Scholar
  31. 31.
    D. Nauck, U. Nauck, and R. Kruse. NEFCLASS for JAVA—new learning algorithms. In Proc. 18th Intl. Conf. of the North American Fuzzy Information Processing Society NAFIPS’99. IEEE Press, New York, NY, 1999. 272, 274Google Scholar
  32. 32.
    V. V. Raghavan and K. Birchard. A clustering strategy based on a formalism of the reproductive process in natural systems. In Proc. 2nd Intl. Conf. of Research and Development in Information Retrieval, pages 10–22, 1978. 279Google Scholar
  33. 33.
    R. Schärf, H. Schwan, and U. Thönnessen. Reconnaissance in SAR images. In Proc. of the European Conference on Synthetic Aperture Radar, Berlin, Offenbach, pages 343–346, 1998. 271Google Scholar
  34. 34.
    H. Schwan, R. Schärf, and U. Thönnessen. Reconnaissance of extended targets in SAR image data. In Proc. of the European Symposium on Remote Sensing, Barcelona, September 21th–24th, 1998. 271Google Scholar
  35. 35.
    U. Stilla, E. Michaelsen, and K. Lütjen. Automatic extraction of buildings from aerial images. In Leberl, Kalliany, and Gruber, editors, Mapping Buildings, Roads and other Man-Made Structures from Images, Proc. IAPR-TC7 Workshop, Graz, pages 229–244. R. Oldenbourg, München, 1996. 271Google Scholar
  36. 36.
    N. Vasconcelos and A. Lippman. A bayesian framework for semantic content characterization. In Proc. Intl. Conf. Computer Vision and Pattern Recognition CVPR, pages 566–571, 1998. 270Google Scholar
  37. 37.
    L.-X. Wang and J. M. Mendel. Generating fuzzy rules by learning from examples. IEEE Trans. Syst., Man, Cybern., 22(6):1414–1427, 1992. 272MathSciNetCrossRefGoogle Scholar
  38. 38.
    L. A. Zadeh. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Systems, Man &amt; Cybernetics, 3:28–44, 1973. 282zbMATHMathSciNetGoogle Scholar
  39. 39.
    L. A. Zadeh. Computing with words. IEEE Transactions on Fuzzy Systems, 4:103–111, 1996. 269CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Rudolf Kruse
    • 1
  • Aljoscha Klose
    • 1
  1. 1.Dept. of Knowledge Processing and Language EngineeringOtto-von-Guericke-University of MagdeburgMagdeburgGermany

Personalised recommendations