Cheap Vision—Exploiting Ecological Niche and Morphology

  • Rolf Pfeifer
  • Dimitrios Lambrinos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1963)


In the course of evolutionary history, the visual system has evolved as part of a complete autonomous agent in the service of motor control. Therefore, the synthetic methodology investigates visual skills in the context of tasks a complete agent has to perform in a particular environment using autonomous mobile robots as modeling tools. We present a number of case studies in which certain vision-based behaviors in insects have been modeled with real robots, the snapshot model for landmark navigation, the average landmark vector model (ALV), a model of visual odometry, and the evolution of the morphology of an insect eye. From these case studies we devise a number of principles that characterize the concept of “cheap vision”. It is concluded that—if ecological niche and morphology are properly taken into account—in many cases vision becomes much simpler.


Mobile Robot Target Location Analog Robot Motion Parallax Visual Odometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amidi, O., Kanade, T., Fujita, K. (1998). A visual odometer for autonomous helicopter flight, Intelligent Autonomous Systems, Eds. Y. Kakazu et al. IOS Press, 123–130. 221Google Scholar
  2. 2.
    Borst, A., Egelhaaf, M. (1993). Detecting visual motion: Theory and models, Visual Motion and its Role in the Stabilization of Gaze. F. A. Miles and J. Wallman (eds.), Elsevier Science, 3–27. 215Google Scholar
  3. 3.
    Brooks, R. A. (1991). Intelligence without reason. Proceedings of the International Joint Conference on Artificial Intelligence-91, 569–595. 203Google Scholar
  4. 4.
    Cartright, B. A., and Collett, R. S. (1983). Landmark navigation in bees. Journal of Comparative Physiology, 151, 521–543. 205, 206CrossRefGoogle Scholar
  5. 5.
    Chahl, J. S., Srinivasan, M. V. (1997). Reflective surfaces for panoramic imaging. Applied Optics, 36 (31), 8275–8285. 216CrossRefGoogle Scholar
  6. 6.
    Chang, C., and Gaudiano, P. (2000) (Eds.). Robotics and Autonomous Systems, special issue: Biomimetic Robotics, 30(1–2), 1–2. 224Google Scholar
  7. 7.
    Franceschini, N., Pichon, J. M., and Blanes, C. (1992). From insect vision to robot vision. Philosophical Transactions of the Royal Society, London B, 337, 283–294. 217CrossRefGoogle Scholar
  8. 8.
    Franz, M. O., Schölkopf, B., and Mallot, H. A. (1998). Where did I take that snapshot? Scene-based homing by image matching. Biological Cybernetics, 79, 191–202. 207zbMATHCrossRefGoogle Scholar
  9. 9.
    Horswill, I. (1992). Characterizing adaptation by constraint. In F. J. Varela and P. Bourgine (Eds.), Toward a practice of autonomous systems: Proceedings of the First European Conference on Artificial Life, 58–64. Cambridge, MA: MIT Press. 203Google Scholar
  10. 10.
    Horswill, I. (1993). A simple, cheap, and robust visual navigation system. In J.-A. Meyer, H. L. Roitblat, and S. W. Wilson (Eds.), From animals to animats: Proceedings of the Second International Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press (A Bradford Book). 203Google Scholar
  11. 11.
    Iida, F., and Lambrinos, D. (in press). Navigation in an autonomous flying robot by using a biologically inspired visual odometer. In McKee G. T. and Schenker P. S. (Eds.) Proc. of SPIE Vol 4196, Conf. on Sensor Fusion and Decentralized Control in Robotic Systems III, Boston, MA. 214, 217, 221Google Scholar
  12. 12.
    Lambrinos, D., Maris, M., Kobayashi, H., Labhart, T., Pfeifer R., and Wehner, R. (1997). An autonomous agent navigating with a polarized light compass. Adaptive Behavior, 6, 175–206. 208CrossRefGoogle Scholar
  13. 13.
    Lambrinos, D., Möller, R., Pfeifer, R., and Wehner, R. (1998). Landmark navigation without snapshots: the average landmark vector model. In N. Elsner, and R. Wehner (Eds.). Proc. Neurobiol. Conf. Göttingen, 30a. Stuttgart: Georg Thieme Verlag. 211Google Scholar
  14. 14.
    Lambrinos, D., Müller, R., Labhart, T., Pfeifer, R., and Wehner, R. (2000). A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems, special issue: Biomimetic Robotics, 30(1–2), 39–64. 207, 211CrossRefGoogle Scholar
  15. 15.
    Lichtensteiger, L., and Eggenberger, P. (1999). Evolving the morphology of a compound eye on a robot. In: Proc. of the Third European Workshop on Advanced Mobile Robots (Eurobot’ 99), 127–134. 217Google Scholar
  16. 16.
    Lichtensteiger, L. (2000). Towards optimal sensor morphology for specific tasks: evolution of an artificial compund eye for estimating time to contact.. In McKee G. T. and Schenker P. S. (Eds.) Proc. of SPIE Vol 4196, Conf. on Sensor Fusion and Decentralized Control in Robotic Systems III, Boston, MA. 220Google Scholar
  17. 17.
    Möller, R. (1999). Visual homing in analog hardware. In Proc. 2nd EuropeanWorkshop of Neurmorphic Systems. 211Google Scholar
  18. 18.
    Möller, R. (2000). Insect visual homing strategies in a robot with analog processing. Biological Cybernetics, special issue: Navigation in Biological and Artificial Systems (to appear). 211Google Scholar
  19. 19.
    Möller, R., Lambrinos, D., Roggendorf, T., Pfeifer, R., and Wehner, R. (in press). Insect strategies of visual homing in mobile robots. To appear in: T. Consi, and B. Webb (Eds.). Biorobotics, AAAI Press. 205, 207Google Scholar
  20. 20.
    Mura, F., and Franceschini, N. (1994). Visual control of altitude and speed in a flying agent. Proc. of the 3rd International Conference on the Simulation of Adaptive Behavior: From Animals to Animats, 91–99. 215Google Scholar
  21. 21.
    Netter, T., and Franceschini, N. (1999). Towards nap-of-the-earth flight using optical flow. Proc. ECAL’99, 334–338. 215Google Scholar
  22. 22.
    Pfeifer, R. (1996). Building “Fungus Eaters”: Design principles of autonomous agents. In P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, and S. W. Wilson (Eds.), From animals to animats: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior, 3–12. Cambridge, Ma: MIT Press (A Bradford Book). 221, 222Google Scholar
  23. 23.
    Pfeifer, R., and Scheier, C. (1999). Understanding intelligence. Cambridge, Ma.: MIT Press. 203, 221, 222Google Scholar
  24. 24.
    Prescott, T. J. (1995). Spatial representation for navigation in animats. Adaptive Behaviour, 4(2):85–123. 202CrossRefGoogle Scholar
  25. 25.
    Rechenberg, I. (1973). Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution [Evolutionary strategies: optimization of technical systems with principles from biological evolution]. Stuttgart, Germany: Frommann-Holzboog. 218Google Scholar
  26. 26.
    Reichhardt, W. (1969). Movement perception in insects. In W. Reichhardt (Ed.) Processing of optical data by organisms and machines, 465–493. New York: Academic Press. 215Google Scholar
  27. 27.
    Roggendorf, T. (2000). Visual landmark navigation in a natural complex environment (in German). Visuelle Landmarkennavigation in einer natürlichen, komplexen Umgebung. Diploma thesis, Dept. of Theoretical Biology and Biological Cybernetics, Faculty of Biology, University of Bielefeld. 214Google Scholar
  28. 28.
    Srinivasan, M. V., Zhang, S. W., and Bidwell, N. (1997). Visually mediated odometry in honeybees. Journal of Experimental Biology, 200, 2513–2522. 215Google Scholar
  29. 29.
    Srinivasan, M. V., Zhang, S., Altwein, M., and Tautz, J. (2000). Honeybee navigation: nature and calibration of the “odometer”. Science, 287, 851–853. 215CrossRefGoogle Scholar
  30. 30.
    Wehner, R. (1994). The polarization-vision project: championing organismic biology. In K. Schildberger, and N. Elsner (Eds.). Neural Basis of Adaptive Behaviour. Stuttgart: G. Fischer, 103–143. 208Google Scholar
  31. 31.
    Wehner, R., Michel, B., and Antonsen, P. (1996). Visual navigation in insects: coupling of egocentric and geocentric information. Jounral of Experimental Biology, 199, 129–140. 205, 206Google Scholar
  32. 32.
    Wehner, R., and Räber, R. (1979). Visual spatial memory in desert ants Cataglyphis bicolor (Hymenoptera: Foricidae). Experientia 35, 1569–1571. 205CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Rolf Pfeifer
    • 1
  • Dimitrios Lambrinos
    • 1
  1. 1.Artificial Intelligence Laboratory, Department of Information TechnologyUniversity of ZurichZurichSwitzerland

Personalised recommendations