Skip to main content

Cheap Vision—Exploiting Ecological Niche and Morphology

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1963))

Abstract

In the course of evolutionary history, the visual system has evolved as part of a complete autonomous agent in the service of motor control. Therefore, the synthetic methodology investigates visual skills in the context of tasks a complete agent has to perform in a particular environment using autonomous mobile robots as modeling tools. We present a number of case studies in which certain vision-based behaviors in insects have been modeled with real robots, the snapshot model for landmark navigation, the average landmark vector model (ALV), a model of visual odometry, and the evolution of the morphology of an insect eye. From these case studies we devise a number of principles that characterize the concept of “cheap vision”. It is concluded that—if ecological niche and morphology are properly taken into account—in many cases vision becomes much simpler.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amidi, O., Kanade, T., Fujita, K. (1998). A visual odometer for autonomous helicopter flight, Intelligent Autonomous Systems, Eds. Y. Kakazu et al. IOS Press, 123–130. 221

    Google Scholar 

  2. Borst, A., Egelhaaf, M. (1993). Detecting visual motion: Theory and models, Visual Motion and its Role in the Stabilization of Gaze. F. A. Miles and J. Wallman (eds.), Elsevier Science, 3–27. 215

    Google Scholar 

  3. Brooks, R. A. (1991). Intelligence without reason. Proceedings of the International Joint Conference on Artificial Intelligence-91, 569–595. 203

    Google Scholar 

  4. Cartright, B. A., and Collett, R. S. (1983). Landmark navigation in bees. Journal of Comparative Physiology, 151, 521–543. 205, 206

    Article  Google Scholar 

  5. Chahl, J. S., Srinivasan, M. V. (1997). Reflective surfaces for panoramic imaging. Applied Optics, 36 (31), 8275–8285. 216

    Article  Google Scholar 

  6. Chang, C., and Gaudiano, P. (2000) (Eds.). Robotics and Autonomous Systems, special issue: Biomimetic Robotics, 30(1–2), 1–2. 224

    Google Scholar 

  7. Franceschini, N., Pichon, J. M., and Blanes, C. (1992). From insect vision to robot vision. Philosophical Transactions of the Royal Society, London B, 337, 283–294. 217

    Article  Google Scholar 

  8. Franz, M. O., Schölkopf, B., and Mallot, H. A. (1998). Where did I take that snapshot? Scene-based homing by image matching. Biological Cybernetics, 79, 191–202. 207

    Article  MATH  Google Scholar 

  9. Horswill, I. (1992). Characterizing adaptation by constraint. In F. J. Varela and P. Bourgine (Eds.), Toward a practice of autonomous systems: Proceedings of the First European Conference on Artificial Life, 58–64. Cambridge, MA: MIT Press. 203

    Google Scholar 

  10. Horswill, I. (1993). A simple, cheap, and robust visual navigation system. In J.-A. Meyer, H. L. Roitblat, and S. W. Wilson (Eds.), From animals to animats: Proceedings of the Second International Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press (A Bradford Book). 203

    Google Scholar 

  11. Iida, F., and Lambrinos, D. (in press). Navigation in an autonomous flying robot by using a biologically inspired visual odometer. In McKee G. T. and Schenker P. S. (Eds.) Proc. of SPIE Vol 4196, Conf. on Sensor Fusion and Decentralized Control in Robotic Systems III, Boston, MA. 214, 217, 221

    Google Scholar 

  12. Lambrinos, D., Maris, M., Kobayashi, H., Labhart, T., Pfeifer R., and Wehner, R. (1997). An autonomous agent navigating with a polarized light compass. Adaptive Behavior, 6, 175–206. 208

    Article  Google Scholar 

  13. Lambrinos, D., Möller, R., Pfeifer, R., and Wehner, R. (1998). Landmark navigation without snapshots: the average landmark vector model. In N. Elsner, and R. Wehner (Eds.). Proc. Neurobiol. Conf. Göttingen, 30a. Stuttgart: Georg Thieme Verlag. 211

    Google Scholar 

  14. Lambrinos, D., Müller, R., Labhart, T., Pfeifer, R., and Wehner, R. (2000). A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems, special issue: Biomimetic Robotics, 30(1–2), 39–64. 207, 211

    Article  Google Scholar 

  15. Lichtensteiger, L., and Eggenberger, P. (1999). Evolving the morphology of a compound eye on a robot. In: Proc. of the Third European Workshop on Advanced Mobile Robots (Eurobot’ 99), 127–134. 217

    Google Scholar 

  16. Lichtensteiger, L. (2000). Towards optimal sensor morphology for specific tasks: evolution of an artificial compund eye for estimating time to contact.. In McKee G. T. and Schenker P. S. (Eds.) Proc. of SPIE Vol 4196, Conf. on Sensor Fusion and Decentralized Control in Robotic Systems III, Boston, MA. 220

    Google Scholar 

  17. Möller, R. (1999). Visual homing in analog hardware. In Proc. 2nd EuropeanWorkshop of Neurmorphic Systems. 211

    Google Scholar 

  18. Möller, R. (2000). Insect visual homing strategies in a robot with analog processing. Biological Cybernetics, special issue: Navigation in Biological and Artificial Systems (to appear). 211

    Google Scholar 

  19. Möller, R., Lambrinos, D., Roggendorf, T., Pfeifer, R., and Wehner, R. (in press). Insect strategies of visual homing in mobile robots. To appear in: T. Consi, and B. Webb (Eds.). Biorobotics, AAAI Press. 205, 207

    Google Scholar 

  20. Mura, F., and Franceschini, N. (1994). Visual control of altitude and speed in a flying agent. Proc. of the 3rd International Conference on the Simulation of Adaptive Behavior: From Animals to Animats, 91–99. 215

    Google Scholar 

  21. Netter, T., and Franceschini, N. (1999). Towards nap-of-the-earth flight using optical flow. Proc. ECAL’99, 334–338. 215

    Google Scholar 

  22. Pfeifer, R. (1996). Building “Fungus Eaters”: Design principles of autonomous agents. In P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, and S. W. Wilson (Eds.), From animals to animats: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior, 3–12. Cambridge, Ma: MIT Press (A Bradford Book). 221, 222

    Google Scholar 

  23. Pfeifer, R., and Scheier, C. (1999). Understanding intelligence. Cambridge, Ma.: MIT Press. 203, 221, 222

    Google Scholar 

  24. Prescott, T. J. (1995). Spatial representation for navigation in animats. Adaptive Behaviour, 4(2):85–123. 202

    Article  Google Scholar 

  25. Rechenberg, I. (1973). Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution [Evolutionary strategies: optimization of technical systems with principles from biological evolution]. Stuttgart, Germany: Frommann-Holzboog. 218

    Google Scholar 

  26. Reichhardt, W. (1969). Movement perception in insects. In W. Reichhardt (Ed.) Processing of optical data by organisms and machines, 465–493. New York: Academic Press. 215

    Google Scholar 

  27. Roggendorf, T. (2000). Visual landmark navigation in a natural complex environment (in German). Visuelle Landmarkennavigation in einer natürlichen, komplexen Umgebung. Diploma thesis, Dept. of Theoretical Biology and Biological Cybernetics, Faculty of Biology, University of Bielefeld. 214

    Google Scholar 

  28. Srinivasan, M. V., Zhang, S. W., and Bidwell, N. (1997). Visually mediated odometry in honeybees. Journal of Experimental Biology, 200, 2513–2522. 215

    Google Scholar 

  29. Srinivasan, M. V., Zhang, S., Altwein, M., and Tautz, J. (2000). Honeybee navigation: nature and calibration of the “odometer”. Science, 287, 851–853. 215

    Article  Google Scholar 

  30. Wehner, R. (1994). The polarization-vision project: championing organismic biology. In K. Schildberger, and N. Elsner (Eds.). Neural Basis of Adaptive Behaviour. Stuttgart: G. Fischer, 103–143. 208

    Google Scholar 

  31. Wehner, R., Michel, B., and Antonsen, P. (1996). Visual navigation in insects: coupling of egocentric and geocentric information. Jounral of Experimental Biology, 199, 129–140. 205, 206

    Google Scholar 

  32. Wehner, R., and Räber, R. (1979). Visual spatial memory in desert ants Cataglyphis bicolor (Hymenoptera: Foricidae). Experientia 35, 1569–1571. 205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pfeifer, R., Lambrinos, D. (2000). Cheap Vision—Exploiting Ecological Niche and Morphology. In: Hlaváč, V., Jeffery, K.G., Wiedermann, J. (eds) SOFSEM 2000: Theory and Practice of Informatics. SOFSEM 2000. Lecture Notes in Computer Science, vol 1963. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44411-4_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-44411-4_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41348-6

  • Online ISBN: 978-3-540-44411-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics