Skip to main content

Quantified Propositional Gödel Logics

  • Conference paper
  • First Online:
Logic for Programming and Automated Reasoning (LPAR 2000)

Abstract

It is shown that Gqp , the quantified propositional Gödel logic based on the truth-value set V = {1 - 1/n : n≥1}∪{1}, is decidable. This result is obtained by reduction to Büchi's theory S1S. An alternative proof based on elimination of quantifiers is also given, which yields both an axiomatization and a characterization of Gqp as the intersection of all finite-valued quantified propositional Gödel logics.

2000 Mathematics Subject Classification: Primary 03B50; Secondary 03B55.

Research supported by the Austrian Science Fund under grant P-12652 MAT

Research supported by EC Marie Curie fellowship HPMF-CT-19 99-00301

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baaz, M.: Infinite-valued Gödel logics with 0-1-projections and relativizations. In Gödel 96. Kurt Gödel’s Legacy. Proceedings. LNL 6, Springer, 23–33. 248

    Google Scholar 

  2. Baaz, M., Leitsch, A., Zach, R.: Incompleteness of an infinite-valued first-order Gödel logic and of some temporal logics of programs. In Computer Science Logic. Selected Papers from CSL’95. Springer, 1996, 1–15. 241

    Google Scholar 

  3. Baaz, M., Veith, H.: Interpolation in fuzzy logic. Arch. Math. Logic, 38 (1999), 461–489. 248, 248, 249, 249

    Article  MATH  MathSciNet  Google Scholar 

  4. Baaz, M., Veith, H.: An axiomatization of quantified propositional Gödel logic using the Takeuti-Titani rule. In Logic Colloquium 1998. Proceedings. LNL 13, Association for Symbolic Logic, 91–104. 241, 241, 241, 244, 248

    Google Scholar 

  5. Baaz, M., Zach R.: Compact propositional Gödel logics. In 28th International Symposium on Multiple Valued Logic. Proceedings. IEEE Press, 1998, 108–113. 241

    Google Scholar 

  6. Büchi, J. R.: On a decision method in restricted second order arithmetic. In Logic, Methodology, and Philosophy of Science, Proceedings of the 1960 Congress, Stanford University Press, 1–11. 241, 245

    Google Scholar 

  7. Dummett, M.: A propositional calculus with denumerable matrix. J. Symbolic Logic, 24(1959), 97–106. 240, 240, 242, 244, 244

    Article  MATH  MathSciNet  Google Scholar 

  8. Dunn, J. M., Meyer, R. K.: Algebraic completeness results for Dummett’s LC and its extensions. Z. Math. Logik Grundlagen Math., 17 (1971), 225–230. 240

    Article  MATH  MathSciNet  Google Scholar 

  9. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks using quantified boolean formulas, In AAAI-2000. Proceedings. to appear. 241

    Google Scholar 

  10. Gödel, K.: Zum intuitionistischen Aussagenkalkül. Anz. Akad. Wiss. Wien, 69 (1932), 65–66. 240, 242

    Google Scholar 

  11. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, 1998. 240

    Google Scholar 

  12. Horn, A.: Logic with truth values in a linearly ordered Heyting algebra. J. Symbolic Logic, 27(1962), 159–170. 240

    Article  MathSciNet  Google Scholar 

  13. Pearce, D.: Stable inference as intuitionistic validity. J. Logic Programming, 38 (1999), 79–91. 240

    Article  MATH  MathSciNet  Google Scholar 

  14. Takeuti, G., Titani, S.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. Symbolic Logic, 49 (1984), 851–866. 241

    Article  MATH  MathSciNet  Google Scholar 

  15. Visser, A.: On the completeness principle: a study of provability in Heyting’s Arithmetic. Annals Math. Logic, 22 (1982), 263–295. 240

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baaz, M., Ciabattoni, A., Zach, R. (2000). Quantified Propositional Gödel Logics. In: Parigot, M., Voronkov, A. (eds) Logic for Programming and Automated Reasoning. LPAR 2000. Lecture Notes in Artificial Intelligence(), vol 1955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44404-1_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-44404-1_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41285-4

  • Online ISBN: 978-3-540-44404-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics