Skip to main content

Playing Logic Programs with the Alpha-Beta Algorithm

  • Conference paper
  • First Online:
Logic for Programming and Automated Reasoning (LPAR 2000)

Part of the book series: Lecture Notes in Artificial Intelligence ((LNAI,volume 1955))

  • 376 Accesses

Abstract

Alpha-Beta is a well known optimized algorithm used to compute the values of classical combinatorial games, like chess and checkers The known proofs of correctness of Alpha-Beta do rely on very specific properties of the values used in the classical context (integers or reals), and on the finiteness of the game tree. In this paper we prove that Alpha-Beta correctly computes the value of a game tree even when these values are chosen in a much wider set of partially ordered domains, which can be pretty far apart from integer and reals, like in the case of the lattice of idempotent substitutions or ex-equations used in logic programming. We do so in a more general setting that allows us to deal with infinite games, and we actually prove that for potentially infinite games Alpha-Beta correctly computes the value of the game whenever it terminates. This correctness proofs allows us to apply Alpha-Beta to new domains, like constraint logic programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative linear logic. The Journal of Symbolic Logic, 59(2):543–574, 1994. 207

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Blass. A game semantics for linear logic. Annals of Pure and Applied Logic, 56:pages 183–220, 1992. 207

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach: Theory and applications. Journal of Logic Programming, 19–20:149–197, 1994.208

    Article  MathSciNet  Google Scholar 

  4. P. Curien and H. Herbelin. Computing with abstract bohm trees. 1996. 207

    Google Scholar 

  5. R. Di Cosmo, J.-V. Loddo, and S. Nicolet. A game semantics foundation for logic programming. In C. Palamidessi, H. Glaser, and K. Meinke, editors, PLILP’98, volume 1490 of Lecture Notes in Computer Science, pages 355–373, 1998. 208, 217, 217, 220

    Google Scholar 

  6. G. Diderich. A survey on minimax trees and associated algorithms. Minimax and its Applications, Kluwer Academic Publishers, 1995. 208

    Google Scholar 

  7. F. Fages. Constructive negation by pruning. Journal of Logic Proigramming, 2(32):85–118, 1997. 218

    Article  MathSciNet  Google Scholar 

  8. J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic Programming, 19/20:503–581, 1994. 217

    Article  MathSciNet  Google Scholar 

  9. A. Joyal. Free lattices, communication and money games. Proceedings of the 10th International Congress of Logic, Methodology, and Philosophy of Science, 1995. 207

    Google Scholar 

  10. N. J. Kim Marriot, Harald Søndergaard. Denotational abstract interpretation of logic programs. ACM Transaction on Programming Languages and Systems, 16(3):607–648, 1994. 219

    Article  Google Scholar 

  11. F. Lamarche. Game semantics for full propositional linear logic. Proceedings of the 10th Annual IEEE Symposium on Logic in Computer Science, pages 464–473, 1995. 207

    Google Scholar 

  12. G. Owen. Game Theory. W.B. Saunders, 1968. 209

    Google Scholar 

  13. V. D. P. Baillot and T. Ehrhard. Believe it or not, AJM’s games model is a model of classical linear logic. Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science, pages pages 68–75, 1997. 207

    Google Scholar 

  14. J. Pearl. Heuristics. Intelligent Search Strategies for Computer Problem Solving. Addison Wesley, 1984. 208, 210, 215

    Google Scholar 

  15. A. Plaat. Research Re: search & Re-search. PhD thesis, Tinbergen Institute and Department of Computer Science, Erasmus University Rotterdam, 1996. 208

    Google Scholar 

  16. J. von Neumann. Zur Theorie der Gesellschaftsspiele. Mathaematische Annalen, (100):195–320, 1928. 208

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jean-Vincent, L., Di Cosmo, R. (2000). Playing Logic Programs with the Alpha-Beta Algorithm. In: Parigot, M., Voronkov, A. (eds) Logic for Programming and Automated Reasoning. LPAR 2000. Lecture Notes in Artificial Intelligence(), vol 1955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44404-1_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-44404-1_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41285-4

  • Online ISBN: 978-3-540-44404-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics