Skip to main content

Essentially Every Unimodular Matrix Defines an Expander

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1969))

Included in the following conference series:

  • 714 Accesses

Abstract

We generalize the construction of Gabber and Galil to essentially every unimodular matrix in SL 2(Z). It is shown that every parabolic or hyperbolic fractional linear transformation explicitly defines an expander of bounded degree and constant expansion. Thus all but a vanishingly small fraction of unimodular matrices define expanders.

Research supported in part by NSF grant CCR-9820806 and by a Guggenheim Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai, J. Komlos and E. Szemeredi, Sorting in c log n parallel steps, Combinatorica, 3, (1983) 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Ajtai, J. Komlos and E. Szemeredi, Deterministic simulation in LOGSPACE, Proc. of the 19th ACM STOC, 132–140, 1987.

    Google Scholar 

  3. M. Ajtai, J. Komlós and E. Szemerédi, Generating expanders from two permutations. In A tribute to Paul Erdös, edited by A. Baker, B. Bollobás & A. Hajnal. pp. 1–12. Cambridge University Press, 1990.

    Google Scholar 

  4. N. Alon, Eigenvalues, geometric expanders, sorting in rounds and Ramsey Theory, Combinatorica 6, 207–219.

    Google Scholar 

  5. N. Alon, Eigenvalues and Expanders, Combinatorica 6, 83–96.

    Google Scholar 

  6. N. Alon and V. D. Milman, Eigenvalues, expanders and superconcentrators. Proc of the 25th ACM STOC, 320–322. 1984.

    Google Scholar 

  7. N. Alon and J. Spencer, with an appendix by P. Erdös, The Probabilistic Method. John Wiley and Sons, Inc.1992.

    Google Scholar 

  8. D. Angulin, A note on a construction of Margulis, Information Processing Letters, 8, pp 17–19, (1979).

    Article  MathSciNet  Google Scholar 

  9. F. R. K. Chung, On Concentrators, superconcentrators, generalized, and nonblocking networks, Bell Sys. Tech J. 58, pp 1765–1777, (1978).

    Google Scholar 

  10. O. Gabber and Z. Galil, Explicit construction of linear size superconcentrators. JCSS 22, pp 407–420 (1981).

    MATH  MathSciNet  Google Scholar 

  11. A. Lubotsky, R. Phillip and P. Sarnak, Explicit expanders and the Ramanujan conjectures. Proceedings of the 18th ACM STOC, 1986, 240–246. Combinatorica, 8, 1988, 261-277.

    Google Scholar 

  12. G. A. Margulis, Explicit construction of concentrators. Problems Inform. Transmission 9, 1973, 325–332.

    MathSciNet  Google Scholar 

  13. G. A. Margulis, Explicit group-theoretic constructions for combinatorial designs with applications expanders and concentrators. Problems Inform. Transmission 24, 1988, 39–46.

    MATH  MathSciNet  Google Scholar 

  14. J. Naor and M. Naor, Small bias probability spaces: efficient constructions and applications. Proc. of 22nd ACM STOC, 1990. 213–223.

    Google Scholar 

  15. N. Pippenger, Superconcentrators. SIAM J. Computing 6, pp 298–304, (1972)

    Article  MathSciNet  Google Scholar 

  16. M. Pinsker, On the complexity of a concentrator, The 7th International Teletraffic Conference, Stockholm, 318/1–318/4, 1973.

    Google Scholar 

  17. L. Valiant, Graph-theoretic properties in computational complexity, JCSS, 13, 1976, 278–285.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cai, JY. (2000). Essentially Every Unimodular Matrix Defines an Expander. In: Goos, G., Hartmanis, J., van Leeuwen, J., Lee, D.T., Teng, SH. (eds) Algorithms and Computation. ISAAC 2000. Lecture Notes in Computer Science, vol 1969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40996-3_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-40996-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41255-7

  • Online ISBN: 978-3-540-40996-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics