Skip to main content

On Approximate Learning by Multi-layered Feedforward Circuits

  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1968))

Included in the following conference series:

  • 436 Accesses

Abstract

We consider the problem of efficient approximate learning by multi-layered feedforward circuits subject to two objective functions.

First, we consider the objective to maximize the ratio of correctly classified points compared to the training set size (e.g., see [3],[5]). We show that for single hidden layer threshold circuits with n hidden nodes and varying input dimension, approximation of this ratio within a relative error c/n3, for some positive constant c, is NP-hard even if the number of examples is limited with respect to n. For architectures with two hidden nodes (e.g., as in [6]), approximating the objective within some fixed factor is NP-hard even if any sigmoid-like activation function in the hidden layer and å-separation of the output [19] is considered, or if the semilinear activation function substitutes the threshold function.

Next, we consider the objective to minimize the failure ratio [2]. We show that it is NP-hard to approximate the failure ratio within every constant larger than 1 for a multilayered threshold circuit provided the input biases are zero. Furthermore, even weak approximation of this objective is almost NP-hard.

Research supported by NSF grant CCR-9800086.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Amaldi and V. Kann, The complexity and approximability of finding maximum feasible subsystems of linear relations, Theoretical Computer Science 147 (1-2), pp.181–210, 1995. 265

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Arora, L. Babai, J. Stern, and Z. Sweedyk, The hardness of approximate optima in lattices, codes and systems of linear equations, Journal of Computer and System Sciences, 54, pp. 317–331, 1997. 264, 265, 266, 273, 275, 277

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Bartlett and S. Ben-David, Hardness results for neural network approximation problems, to appear in Theoretical Computer Science (conference version in Fischer P. and Simon H. U. (eds.), Computational Learning Theory, Lecture Notes in Artificial Intelligence 1572, Springer, pp. 639–644, 1999). 264, 265, 266, 268, 272, 277

    Google Scholar 

  4. M. Bellare, S. Goldwasser, C. Lund, and A. Russell, Efficient multi-prover interactive proofs with applications to approximation problems, in Proceedings of the 25th ACM Symposium on the Theory of Computing, pp. 113–131, 1993. 273

    Google Scholar 

  5. S. Ben-David, N. Eiron and P. M. Long, On the difficulty of approximately maximizing agreements, 13th Annual ACM Conference on Computational Learning Theory (COLT), 2000. 264, 265, 277

    Google Scholar 

  6. A. Blum and R. L. Rivest, Training a 3-node neural network is NP-complete, Neural Networks 5, pp. 117–127, 1992. 264, 265, 266

    Article  Google Scholar 

  7. J. Brown, M. Garber, and S. Vanable, Artificial neural network on a SIMD architecture, in Proc. 2nd Symposium on the Frontier of Massively Parallel Computation, Fairfax, VA, pp. 43–47, 1988. 272

    Google Scholar 

  8. B. DasGupta, H. T. Siegelmann, and E. D. Sontag, On the Intractability of Loading Neural Networks, in Roychowdhury V. P., Siu K. Y., and Orlitsky A. (eds.), Theoretical Advances in Neural Computation and Learning, Kluwer Academic Publishers, pp. 357–389, 1994. 265, 266, 272

    Google Scholar 

  9. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, Freeman, San Francisco, 1979. 273

    MATH  Google Scholar 

  10. B. Hammer, Some complexity results for perceptron networks, in Niklasson L., Bodén M., and Ziemke, T. (eds.), ICANN’98, Springer, pp. 639–644, 1998. 265

    Google Scholar 

  11. B. Hammer, Training a sigmoidal network is difficult, in Verleysen M. (ed.), European Symposium on Artificial Neural Networks, D-Facto publications, pp. 255–260, 1998. 265

    Google Scholar 

  12. K.-U. Höffgen, Computational limitations on training sigmoid neural networks, Information Processing Letters 46(6), pp.269–274, 1993. 265

    Article  MATH  MathSciNet  Google Scholar 

  13. K.-U. Höffgen, H.-U. Simon, and K. S. Van Horn, Robust trainability of single neurons, Journal of Computer and System Sciences 50(1), pp.114–125, 1995. 265

    Article  MATH  MathSciNet  Google Scholar 

  14. L. K. Jones, The computational intractability of training sigmoidal neural networks, IEEE Transactions on Information Theory 43(1), pp. 167–713, 1997. 265

    Article  MATH  Google Scholar 

  15. J. S. Judd, On the complexity of loading shallow networks, Journal on Complexity 4(3), pp.177–192, 1988. 264, 265

    Article  MATH  MathSciNet  Google Scholar 

  16. J. S. Judd, Neural network design and the complexity of learning, MIT Press, Cambridge, MA, 1990. 264

    Google Scholar 

  17. V. Kann, S. Khanna, J. Lagergren, and A. Panconesi, On the hardness of approximating max-k-cut and its dual, Technical Report CJTCS-1997-2, Chicago Journal of Theoretical Computer Science, 1997. 267

    Google Scholar 

  18. C. Lund and M. Yannakakis, On the hardness of approximate minimization problems, Journal of the ACM, 41(5), pp. 960–981, 1994. 275

    Article  MATH  MathSciNet  Google Scholar 

  19. W. Maass, G. Schnitger, and E. D. Sontag, A comparison of the computational power of sigmoid versus boolean threshold circuits, in Roychowdhury V. P., Siu K. Y., and Orlitsky A. (eds.), Theoretical Advances in Neural Computation and Learning, Kluwer Academic Publishers, pp. 127–151, 1994. 264, 271

    Google Scholar 

  20. M. Megiddo, On the complexity of polyhedral separability, Discrete Computational Geometry 3, pp. 325–337, 1988. 265, 269

    Article  MATH  MathSciNet  Google Scholar 

  21. C. H. Papadimtriou and M. Yannakakis. Optimization, Approximation and Complexity Classes, Journal of Computer & System Sciences 43, pp. 425–440, 1991. 267

    Article  Google Scholar 

  22. I. Parberry and G. Schnitger, Parallel computation with threshold functions, Journal of Computer and System Sciences, 36, 3 (1988), pp. 278–302. 268

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Simá, Back-propagation is not efficient, Neural Networks 9(6), pp. 1017–1023, 1996. 265

    Article  Google Scholar 

  24. K.-Y. Siu, V. Roychowdhury and T. Kailath, Discrete Neural Computation: A Theoretical Foundation, Englewood Cliffs, NJ: Prentice Hall, 1994. 268

    Google Scholar 

  25. E. D. Sontag, Feedforward nets for interpolation and classification, Journal of Computer and System Sciences 45, pp.20–48, 1992. 265, 268

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Vidyasagar, A theory of learning and generalization, Springer, 1997. 268

    Google Scholar 

  27. V. H. Vu, On the infeasibility of training with small squared errors, in Jordan M. I., Kearns M. J., and Solla S. A. (eds.), Advances in Neural Information Processing Systems 10, MIT Press, pp. 371–377, 1998. 265

    Google Scholar 

  28. B. Widrow, R. G. Winter and R. A. Baxter, Layered neural nets for pattern recognition, IEEE Transactions on Acoustics, Speech and Signal Processing, 36 (1988), pp. 1109–1117. 268

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

DasGupta, B., Hammer, B. (2000). On Approximate Learning by Multi-layered Feedforward Circuits. In: Arimura, H., Jain, S., Sharma, A. (eds) Algorithmic Learning Theory. ALT 2000. Lecture Notes in Computer Science(), vol 1968. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40992-0_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-40992-0_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41237-3

  • Online ISBN: 978-3-540-40992-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics