Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 562))

Abstract

In these two talks, we report on the efforts to probe the role of spin and polarization in gravitation. After reviewing the motivation and historical background, we focus the talks on the experimental searches. These experimental searches are mainly of two categories: (i) laboratory searches (torsion-balance experiments, magnetic resonance experiments, SQUID experiments), and (ii) astrophysical and cosmological searches (pulsar observations, radio-galaxy observations, gamma-ray observations). We first discuss experimental searches for photon polarization coupling and then discuss experimental searches for electron spin-coupling. In the discussion of photon polarization coupling, we review the astrophysical and cosmological electromagnetic propagation observations. In the discussion of electron spin-coupling, we review the weak equivalence principle experiments, the finite-range spin coupling experiments, the spin-spin coupling experiments and the cosmic-spin coupling experiments. We discuss two recent laboratory experiments, a SQUID experiment and a torsion-balance experiment in detail to illustrate the experimental techniques. The ultimate searches for the role of spin in gravitation is to measure the gyrogravitational ratio. A discussion of the strategies to perform such experiments conclude these two talks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Galilei, 1683, Discorsi e dimostriazioni matematiche intorno a due nuove scienze, Elzevir, Leiden. English Translation by H. Crew and A. de Salvio, Dialogues Concerning Two New Sciences, Macmillan, New York, 1914; reprinted by Dover, New York, 1954.

    Google Scholar 

  2. A. Einstein: Jahrb. Radioakt. Elektronik 4, 411 (1907); Corrections by Einstein in Jahrb. Radioakt. Elektronik 5, 98 (1908); English Translations by H. M. Schwartz in Am. J. Phys. 45, 512, 811, 899 (1977).

    ADS  Google Scholar 

  3. L. I. Schi.: Am. J. Phys. 28, 340 (1960)

    Article  ADS  Google Scholar 

  4. W.-T. Ni: A Nonmetric Theory of Gravity, preprint, Montana State University, Bozeman, Montana, USA (1973), http://gravity5.phys.nthu.edu.tw.

  5. W.-T. Ni: Bull. Am. Phys. Soc. 19, 655 (1974).

    Google Scholar 

  6. W.-T. Ni: Phys. Rev. Lett. 38, 301 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Weinberg: Phys. Rev. Lett. 40, 233 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  8. F. Wilczek: Phys. Rev. Lett. 40, 279 (1978).

    Article  ADS  Google Scholar 

  9. M. Dine et al.: Phys. Lett. B 104, 1999 (1981).

    Google Scholar 

  10. M. Shifman et al.: Nucl. Phys. B 166, 493 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Kim: Phys. Rev. Lett. 43, 103 (1979).

    Article  ADS  Google Scholar 

  12. S. L. Cheng, C. Q. Geng and W.-T. Ni: Phys. Rev. D 52 3132 (1995) and references therein.

    ADS  Google Scholar 

  13. Y. Chou, W.-T. Ni and S.-L. Wang: Mod. Phys. Lett. A 5, 2297 (1990); and references therein.

    ADS  Google Scholar 

  14. S.-S. Pan, W.-T. Ni and S.-C. Chen: Mod. Phys. Lett. A 7, 1287 (1992); and references therein.

    ADS  Google Scholar 

  15. T. C. P. Chui and W.-T. Ni: Phys. Rev. Lett. 71, 3247 (1993).

    Article  ADS  Google Scholar 

  16. W.-T. Ni, S.-S. Pan, T. C. P. Chui and B.-Y. Cheng: Int. J. Mod. Phys. 8, 5153 (1993).

    Article  ADS  Google Scholar 

  17. W.-T. Ni, T. C. P. Chui, S.-S. Pan and B.-Y. Cheng: Physica B 194–196 153 (1994).

    Google Scholar 

  18. W.-T. Ni: Class. Quantum Grav. 13, A135 (1996); and references therein.

    Article  ADS  Google Scholar 

  19. W.-T. Ni, S.-S. Pan, H.-C Yeh, L.-S. Hou, J. Wan: Phys. Rev. Lett. 88, 2439 (1999).

    Article  ADS  Google Scholar 

  20. G. Uhlenbeck and S. Goudsmit: Naturwiss. 13, 953 (1925); Nature 117, 264 (1926).

    Article  Google Scholar 

  21. C. W. F. Everitt et al.: this book (2000).

    Google Scholar 

  22. W.-T. Ni: “Spin, Torsion and Polarized Test-Body Experiments”, in Proceedings of the 1983 International School and Symposium on Precision Measurement and Gravity Experiment, Taipei, Republic of China, January 24–February 2, 1983, ed. by W.-T. Ni (Published by National Tsing Hua University, Hsinchu, Taiwan, Republic of China, June 1983), p. 531.

    Google Scholar 

  23. F.W. Hehl and W.-T. Ni: Phys. Rev. D 42, 2045 (1990); and references therein.

    ADS  Google Scholar 

  24. É. Cartan: Sur une Généralisation de la notion de courbure de Riemann et les espaces à torsion. C. R. Acad. Sci. ( Paris) 174, 593, (1922).

    Google Scholar 

  25. É. Cartan: Sur les variétés à connexion afine et la théorie de la relativitée généralisée I, I (suite), II, Ann. Ec. Norm. Sup. 40, 325 (1923); 41, 1 (1924); 42, 17 (1925).

    MathSciNet  Google Scholar 

  26. T.W.B. Kibble: Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212 (1961).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. D.W. Sciama: On the analogy between charge and spin in general relativity, in Recent developments in general relativity (Pergamon+PWN, Oxford, 1962), p. 415.

    Google Scholar 

  28. D.W. Sciama: The physical structure of general relativity. Rev. Mod. Phys. 36, 463, 1103 (1964).

    Article  ADS  Google Scholar 

  29. F.W. Hehl, P. von der Heyde, G.D. Kerlick, and J.M. Nester: Rev. Mod. Phys. 48, 393 (1976).

    Article  ADS  Google Scholar 

  30. A. S. Eddington: A generalization of Weyl’s theory of the electromagnetic and gravitational fields, Proc. Roy. Soc. Lond. Ser. A 99, 104 (1921).

    Google Scholar 

  31. C. Lämmerzahl, Phys. Lett. A 228, 223 (1997).

    ADS  Google Scholar 

  32. P. Singh and L.H. Ryder: Class. Quantum Grav. 14, 3513 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. C. N. Yang: Phys. Rev. Lett. 33, 445 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  34. W.-T. Ni: Phys. Rev. Lett. 35, 319 (1975).

    Article  ADS  Google Scholar 

  35. W.-T. Ni: Math. Proc. Cambridge Phil. Soc. 90, 517 (1981); K.-S. Cheng and W.-T. Ni, ibid 87, 527 (1980).

    Article  MATH  ADS  Google Scholar 

  36. A. Ashtekar: Phys. Rev. Lett. 57, 2244 (1986); Phys. Rev. D 36, 1587 (1987); Lectures on Non-Perturbative Canonical Gravity (World Scientific, Singapore 1991).

    Google Scholar 

  37. C. Lämmerzahl: Class. Quantum Grav. 15, 13 (1998) (also Gen. Rel. Grav. 28, 1043 (1996)).

    Article  MATH  ADS  Google Scholar 

  38. C. Lämmerzahl and W.-T. Ni: work in progress.

    Google Scholar 

  39. Gronwald and F. W. Hehl: Metric-afine gauge theory of gravity; I. Foundatoins, Int. J. Mod. Phys. D6, 263 (1997).

    Google Scholar 

  40. F. W. Hehl and A. Macias: Metric-afine gauge theory of gravity: II. Exact solutions, Int. J. Mod. Phys. D 8, 399 (1999).

    ADS  MathSciNet  Google Scholar 

  41. K. Hayashi and T. Shirafuji: Phys. Rev. D 19, 3524 (1979).

    ADS  MathSciNet  Google Scholar 

  42. P.C. Naik and T. Pradhan: J. Phys. A: Math. Gen. 14, 2795 (1981).

    Article  ADS  Google Scholar 

  43. T. Pradhan, R.P. Malik and P.C. Naik: Pramana 24, 77 (1985).

    Article  ADS  Google Scholar 

  44. W.-T. Ni: “Equivalence Principles and Precision Experiments” p. 647, in B.N. Taylor and W.D. Phillips (eds.): Precision Measurement and Fundamental Constants II, Natl. Bur. Stand. (U.S.), Spec. Publ. 617 (1984).

    Google Scholar 

  45. W.-T. Ni: “Timing Observations of the Pulsar Propagations in the Galactic Gravitational Field as Precision Tests of the Einstein Equivalence Principle”, in B. Hidayat and M.W. Feast (eds.): Proceedings of the Second Asian-Pacific Regional Meeting of the International Astronomical Union, (Tira Pustaka, Jakarta 1984), p. 441.

    Google Scholar 

  46. W.-T. Ni: “Equivalence Principles, Their Empirical Foundations, and the Role of Precision Experiments to Test Them”, in W.-T. Ni (ed.): Proceedings of the 1983 International School and Symposium on Precision Measurement and Gravity Experiment, Taipei, Republic of China, January 24–February 2, 1983, (Published by National Tsing Hua University, Hsinchu, Taiwan, Republic of China, June, 1983), p. 491.

    Google Scholar 

  47. M.P. Haugan and T.F. Kauffmann: Phys. Rev. D 52, 3168 (1995).

    ADS  Google Scholar 

  48. T.P. Krisher: Phys. Rev. D 44, R2211 (1991).

    ADS  Google Scholar 

  49. S.M. Carroll, G.B. Field, R. Jackiw: Phys. Rev. D 41, 1231 (1990).

    ADS  Google Scholar 

  50. S.M. Carroll and G.B. Field: Phys. Rev. D 43, 3789 (1991).

    ADS  Google Scholar 

  51. B. Nodland and J.P. Ralston: Phys. Rev. Lett. 78, 3043 (1997).

    Article  ADS  Google Scholar 

  52. J.F.C. Wardle, R.A. Perley, and M.H. Cohen: Phys. Rev. Lett. 79, 1801 (1997).

    Article  ADS  Google Scholar 

  53. D.J. Eisenstein and E.F. Bunn: Phys. Rev. Lett. 79, 1957 (1997).

    Article  ADS  Google Scholar 

  54. S.M. Carroll and G.B. Field: Phys. Rev. Lett. 79, 2394 (1997).

    Article  ADS  Google Scholar 

  55. T.J. Loredo, E.A. Flanagan, and I.M. Wasserman: Phys, Rev. D 56, 7507 (1997).

    ADS  Google Scholar 

  56. S. M. Carroll: Phys. Rev. Lett. 81, 3067 (1998).

    Article  ADS  Google Scholar 

  57. V.W. Hughes, H.G. Robinson, and V. Beltran-Lopez: Phys. Rev. Lett. 4, 342 (1960); V. Beltran-Lopez, H.G. Robinson, and V.W. Hughes: Bull. Am. Phys. Soc. 6, 424 (1961); R.W.P. Drever: Phil. Mag. 6, 683 (1962); J.F. Ellena, W.-T. Ni and T.-S. Ueng: IEEE Transactions on Instrumentation and Measurement IM-36, 175 (1987).

    Article  ADS  Google Scholar 

  58. T.E. Chupp, R.J. Hoara, R.A. Loveman, E.R. Oteiza, J.M. Richardson, M.E. Wagshul: Phys. Rev. Lett. 63, 1541 (1989).

    Article  ADS  Google Scholar 

  59. W.-T. Ni: “Implications of Hughes-Drever Experiments”, in W.-T. Ni (ed.): Proceedings of the 1983 International School and Symposium on Precision Measurement and Gravity Experiment, Taipei, Republic of China, January 24–February 2, 1983, (Published by National Tsing Hua University, Hsinchu, Taiwan, Republic of China, June, 1983), p. 519.

    Google Scholar 

  60. R.V. Eötvös, D. Pekar, and E. Fekete: Ann. Phys. (Leipzig) 68, 11 (1922); also R.V. Eötvös: Math. Naturwiss. Ber. Ungarn (Budapest) 8, 65 (1890).

    Article  Google Scholar 

  61. P.G. Roll, R. Krotkov, and R.H. Dicke: Ann. Phys. (N. Y.) 26, 442(1964).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  62. V.B. Braginsky and V.I. Panov: Zh. Eksp. Teor. Fiz. 61, 873 (1971) [Sov. Phys. JETP 34, 463 (1972)].

    Google Scholar 

  63. Y. Su et al.: Phys. Rev. D 50, 3614 (1994); S. Baessler et al.: Phys. Rev. Lett. 83, 3585 (1999).

    ADS  Google Scholar 

  64. R.F.C. Vessot and M.W. Levine: Gen. Rel. Grav. 10, 181 (1979).

    Article  ADS  Google Scholar 

  65. R.F.C. Vessot et al.: Phys. Rev. Lett. 45, 2081 (1980).

    Article  ADS  Google Scholar 

  66. W.-T. Ni: Phys. Lett. A 120, 174 (1987).

    ADS  Google Scholar 

  67. R. Mansouri and R. U. Sexl: Gen. Rel. Grav. 8, 497 (1977); 8, 515 (1977); 8, 809 (1977).

    Article  ADS  Google Scholar 

  68. Ph. Tourrenc, T. Melliti and J. Bosredon: Gen. Rel. Grav. 28, 1071 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  69. W.-T. Ni, Y. Chou, S.-S. Pan, C.-H. Lin, T.-Y. Hwong, K.-L. Ko and K.-Y. Li: “An Improvement of the Equivalence Principle Test for Spin-Polarized Bodies and the Mass Loss”, in Proceddings of the 3rd ROC-ROK Metrology Symposium, Hsinchu, May 22–24, published by the Center of Measurement Standards, I.T.R.I. (1990) p. 107; C.-H. Hsieh, P.-Y. Jen, K.-L. Ko, K.-Y. Li, W.-T. Ni, S.-S. Pan, Y.-H Shi and R.-J. Tyan: Mod. Phys. Lett. A4 (1989) 1597; W.-T. Ni, P.-Y Jen, C.-H. Hsieh, K.-L. Ko, S.-C Chen, S.-S. Pan and M.-H Tu, “Test of the Equivalence Principle for Spin-Polarized Bodies”, in J.W. Won and Y.K. Park (eds.): Proceddings of Second ROK-ROC Metrology Symposium (Korea Standards Research Institute, 1988) p. VII-2-1.

    Google Scholar 

  70. L.-S. Hou and W.-T. Ni: Rotatable-Tosion-Balance Equivalence Principle Experiment for the Spin-Polarized Ho6Fe23, submitted to Mod. Phys. Lett. A.

    Google Scholar 

  71. T.-H. Jen, W.-T. Ni, S.-S. Pan and S.-L. Wang: “Torsion Balance Experiment Searching for Finite-Range Mass-Spin Interactions”, in H. Sato and T. Nakamura (eds.): Proceedings of the Sixth Marcel Grossmann Meeting on General Relativity (World Scientific, Singapore 1992), p. 489.

    Google Scholar 

  72. R.C. Ritter et al., L.I. Winkler and G.T. Gillies: Phys. Rev. Lett. 70, 701 (1993); the limit on the electron have been multiplied by 8Π2 to be consistent with our notation (R.C. Ritter, private communication).

    Article  ADS  Google Scholar 

  73. J.E. Moody and F. Wilczek: Phys. Rev. D30, 130 (1984).

    ADS  Google Scholar 

  74. D.J. Wineland, J.J. Bollinger, D.J. Heinzen, W.M. Itano, and M.G. Raizen: Phys. Rev. Lett. 67, 1735 (1991).

    Article  ADS  Google Scholar 

  75. B.J. Venema, P.K. Majumder, S.K. Lamoreaux, B.R. Heckel, and E. N. Fortson: Phys. Rev. Lett. 68, 135 (1992).

    Article  ADS  Google Scholar 

  76. A.N. Youdin et al.: Phys. Rev. Lett. 77, 2170 (1996).

    Article  ADS  Google Scholar 

  77. D. Shaul et al.: Class. Quantum Grav. 13, A107 (1996), and references therein.

    Article  ADS  Google Scholar 

  78. W.-T. Ni: Physica B 284–8, 2137 (2000).

    ADS  Google Scholar 

  79. Y.-C. M. Li and W.-T. Ni: Physica B 284–8, 2139 (2000).

    ADS  Google Scholar 

  80. A.A. Ansel'm and N.G. Ural'tsev: Zh. Eksp. Teor. Fiz. 82, 1725 (1982) [Sov. Phys. JETP 55, 997 (1982)]; A.A. Ansel'm: Pis'ma Zh. Eksp. Teor. Fiz. 36, 46 (1982) [JETP Lett. 36, 55 (1982)].

    Google Scholar 

  81. D. Graham and R. Newman, in Proceedings of the Eleventh International Conference on General Relativity and Gravitation, Stockholm, Sweden, 1986, edited by M. A. H. MacCallum (Cambridge Univ. Press, New York, 1987), p.614; D. Graham, Ph.D. Dissertation (University of California, Irvine 1987).

    Google Scholar 

  82. P. V. Vorobyov and Ya. I. Gitarts: Phys. Lett. B 208, 146 (1988).

    ADS  Google Scholar 

  83. R. C. Ritter, C. E. Goldblum, W.-T. Ni, G. T. Gillies, and C. C. Speake: Phys. Rev. D 42, 977 (1990).

    ADS  Google Scholar 

  84. P. R. Phillips: Phys. Rev. Lett. 59, 1784 (1987).

    Article  ADS  Google Scholar 

  85. S.-L. Wang, W.-T. Ni and S.-S. Pan: Mod. Phys. Lett. A 8, 3715 (1993).

    ADS  Google Scholar 

  86. F.-L. Chang, H.-C. Yeh, W.-T. Ni and S.-S. Pan: “Improved experimental limit on the cosmological spatial anisotropy for polarized electrons”, InternationalWorkshop on Gravitation and Cosmology (1995), pp. 21.

    Google Scholar 

  87. C. J. Berglund et al.: Phys. Rev. Lett. 75, 1879 (1995).

    Article  ADS  Google Scholar 

  88. L. Stodolsky: Phys. Rev. Lett. 34, 110 (1975).

    Article  ADS  Google Scholar 

  89. H. Nielson and I. Picek: Nucl. Phys. 211B, 269 (1983).

    Article  ADS  Google Scholar 

  90. L.-S. Hou and W.-T. Ni, “Test of Spatial Anisotropy for Polarized Electrons Using a Rotatable Torsion Balance”, CD-ROM Proceedings for the International Workshop on Gravitation and Astrophysics, November 17–19, 1997, Tokyo (Published in August, 1998).

    Google Scholar 

  91. L.-S. Hou, W.-T. Ni and Y. C. M. Li: Test of Cosmic Spatial Isotropy for Polarized Electrons Using a Rotatable Torsion Balance, submitted to Phys. Rev. Lett.

    Google Scholar 

  92. R. Bluhm and V.A. Kostelecky: Rhys. Rev. Lett. 84, 1381 (2000).

    Article  ADS  Google Scholar 

  93. P.R. Berman (ed.): Atom Interferometry, (Academic Press, 1997), and references therein.

    Google Scholar 

  94. Y. Mukharsky, O. Avenel and É. Varoquaux: Rotation Measurements with a Super-fluid 3He Gyrometer, CD-ROM of the 22nd Low-Temperature Conference, Helsinki, 4–11 August, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ni, WT. (2001). Spin in Gravity. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds) Gyros, Clocks, Interferometers...: Testing Relativistic Graviy in Space. Lecture Notes in Physics, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40988-2_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-40988-2_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41236-6

  • Online ISBN: 978-3-540-40988-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics