Skip to main content

Clocks for Length and Time Measurement

  • Conference paper
  • First Online:
Gyros, Clocks, Interferometers...: Testing Relativistic Graviy in Space

Part of the book series: Lecture Notes in Physics ((LNP,volume 562))

Abstract

The evolution of various fields of science, technology, trade or legal metrology is intimately connected with the ability to relate measurements with each other that were performed at different places and different instants of time. For this purpose a practical system of units of measurement i.e. the International System of Units (SI) has been established by international cooperation [1]. In this SI, the metre and the second represent the base units of length and time, respectively. From all units these two can be realized with by far the highest accuracy since they are based on frequency measurements and most accurate clocks. In contrast to clocks based on mechanical properties of macroscopic bodies, e.g., pendulum clocks, quartz clocks or pulsars, the frequency reference for a suitable oscillator in atomic clocks is mainly determined by the intrinsic properties of suitable absorbers like atoms, molecules or ions. These atomic properties are determined by fundamental constants resulting from the basic interactions between the elementary constituents of matter. Following the generally accepted idea that the properties of each atomic absorber of a selected species are the same, identical clocks can be set up in any desired number and at any desired place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bureau International des Poids et Mesures (Ed.) (1967/1968) Comptes Rendus des séances de la 13e CGPM. Pavillon de Breteuil, F-92310 Sévres, France. BIPM

    Google Scholar 

  2. Bureau International des Poids et Mesures (Ed.) (1983) Comptes Rendus des séances de la 17e CGPM. Pavillon de Breteuil, F-92310 Sévres, France. BIPM

    Google Scholar 

  3. Guinot B. (1997) Application of general relativity to metrology. Metrologia. 34, 261–290

    Article  ADS  Google Scholar 

  4. Sydnor R.L., Allan D.W. (Eds.) (1997) Handbook Selection and Use of Precise Frequency and Time Systems. Radiocommunication Bureau of the International Telecommunication Union, ITU, Place des Nations, CH-1211 Geneva 20, Switzerland

    Google Scholar 

  5. Allan D.W. (1966) Statistics of atomic frequency standards. Proceedings of the IEEE. 54, 221–230

    Google Scholar 

  6. Ramsey N.F. (1950) A molecular beam resonance method with separated oscillating fields. Phys. Rev. 78, 695–699

    Article  ADS  Google Scholar 

  7. Bagayev S.N., Chebotayev V.P., Dmitriyev A.K., Om A.E., Nekrasov Y.V., Skvortsov B.N. (1991) Second-order Doppler-free spectroscopy. Appl. Phys. B 52, 63–66

    Article  Google Scholar 

  8. Phillips W.D. (1998) Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741

    Article  ADS  Google Scholar 

  9. Cohen-Tannoudji C.N. (1998) Manipulating atoms with photons. Rev. Mod. Phys. 70, 707–719

    Article  ADS  Google Scholar 

  10. Chu S. (1998) The manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706

    Article  ADS  Google Scholar 

  11. Raab E.L., Prentiss M., Cable A., Chu S., Pritchard D.E. (1987) Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631–2634

    Article  ADS  Google Scholar 

  12. Davidson N., Lee H., Kasevich M., Chu S. (1994) Raman cooling of atoms in two and three dimensions. Phys. Rev. Lett. 72, 3158–3161

    Article  ADS  Google Scholar 

  13. Wineland D.J., Drullinger R.E., Walls F.L. (1978) Radiation-pressure cooling of bound resonant absorbers. Phys. Rev. Lett. 40, 1639–1642

    Article  ADS  Google Scholar 

  14. Diedrich F., Bergquist J.C., Itano W.M., Wineland D.J. (1989) Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 62, 403–406

    Article  ADS  Google Scholar 

  15. Bauch A., Schröder R. (1997) Experimental veri.cation of the shift of the Cesium hyperfine transition frequency due to blackbody radiation. Phys. Rev. Lett. 78, 622–625

    Article  ADS  Google Scholar 

  16. Gibble K., Chu S. (1993) Laser-cooled Cs frequency standard and a measurement of the frequency shift due to ultracold collisions. Phys. Rev. Lett. 70, 1771–1774

    Article  ADS  Google Scholar 

  17. Bauch A., Schnier D., Tamm C. (1996) Microwave spectroscopy of 171 Yb+ stored in a Paul trap. In: Bergquist J.C. (Ed.) Proceedings of the Fifth Symposium on Frequency Standards and Metrology, Singapore, New Jersey, London, HongKong. World Scientific, 387–388

    Google Scholar 

  18. Bize S., Sortais Y., Santos M.S., Mandache C., Clairon A., Salomon C. (1999) High-accuracy measurement of the 87Rb ground-state hyperfine splitting in an atomic fountain. Europhys. Lett. 45, 558–564

    Article  ADS  Google Scholar 

  19. Fisk P.T.H., Sellars M.J., Lawn M.A., Coles C. (1997) Accurate measurement of the 12.6 GHz “clock” transition in trapped 171Yb+ ions. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 44, 344–354

    Article  Google Scholar 

  20. Berkeland D.J., Miller J.D., Bergquist J.C., Itano W.M., Wineland D.J. (1998) Laser-cooled mercury ion frequency standard. Phys. Rev. Lett. 80, 2089–2092

    Article  ADS  Google Scholar 

  21. Essen L., Parry J.V.L. (1957) The Caesium resonator as a standard of frequency and time. Phil Trans Roy. Soc. A 250, 45–69

    Article  ADS  Google Scholar 

  22. Ramsey N.F. (1990) Experiments with separated oscillatory fields and hydrogen masers. Rev. Mod. Phys. 66, 541–552

    Article  ADS  Google Scholar 

  23. Bauch A., Fischer B., Heindor. T., Schröder R. (1998) Performance of the PTB reconstructed primary clock CS1 and an estimate of its current uncertainty. Metrologia. 35, 829–845

    Article  ADS  Google Scholar 

  24. Ohshima S.I., Nakadan Y., Ikegami T., Koga Y., Drullinger R., Hollberg L. (1989) Characteristics of an optically pumped Cs frequency standard at the NRLM. IEEE Trans. Instrum. Meas. IM 38, 533–536

    Article  Google Scholar 

  25. Rovera G.D., de Clercq E., Clairon A. (1994) An analysis of major frequency shifts in the LPTF optically pumped primary frequency standard. IEEE Trans. Ultrason. Ferroelec. Frequ. Contr. 41, 457–461

    Google Scholar 

  26. Lee W.D., Shirley J.H., Lowe J.P., Drullinger R.E. (1995) The accuracy evaluation of NIST-7. IEEE Trans. Instrum. Meas. IM 44, 120–123

    Article  Google Scholar 

  27. Lee W.D., Drullinger R.E., Shirley J.H., Nelson C., Jennings D.A., Mullen L.O., Walls F.L., Parker T.E., Hasegawa A., Fukuda K., Kotake N., Kajita M., Morikawa T. (1999) Accuracy evaluations and frequency comparisons of NIST-7 and CRL-01. In: Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and The IEEE International Frequency Control Symposium, 62–65

    Google Scholar 

  28. de Clercq E., Makdissi A. (1996) Current status of the LPTF optically pumped Cs beam standard. In: Bergquist J.C. (Ed.) Proceedings of the Fifth Symposium on Frequency Standards and Metrology, Singapore, New Jersey, London, HongKong. World Scientific, 409–410

    Google Scholar 

  29. Ghezali S., Laurent P., Lea S., Clairon A. (1996) An experimental study of the spin-exchange frequency shift in a laser-cooled cesium fountain frequency standard. Europhys. Lett. 36, 25–30

    Article  ADS  Google Scholar 

  30. Kasevich M.A., Riis E., Chu S., DeVoe R.G. (1989) rf spectroscopy in an atomic fountain. Phys. Rev. Lett. 63, 612–615

    Article  ADS  Google Scholar 

  31. Clairon A., Salomon C., Guellati S., Phillips W.D. (1991) Ramsey resonance in a Zacharias fountain. Europhys. Lett. 16, 165–170

    Article  ADS  Google Scholar 

  32. Clairon A., Ghezali S., Santarelli G., Laurent P., Lea S.N., Bahoura M., Simon E., Weyers S., Szymaniec K. (1996) Preliminary accuracy evaluation of a cesium fountain frequency standard. In: Bergquist J. (Ed.) Proceedings of the 5th Symposium on Frequency Standards and Metrology, Singapore. World Scientific, 49–59

    Google Scholar 

  33. Sortais Y., Bize S., Nicolas C., Santos M., Mandache C., Santarelli G., Salomon C., Clairon A. (1999) An evaluation of the collisional frequency shift in a 87Rb cold atom fountain. In: Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and The IEEE International Frequency Control Symposium, 34–38

    Google Scholar 

  34. Fertig C., Legere R., Süptitz W., Gibble K. (1999) Laser-cooled Rb fountain clocks. In: Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and The IEEE International Frequency Control Symposium, 39–42

    Google Scholar 

  35. Jefferts S.R., Mekkhof D.M., Shirley J.H., Parker T.E., Levi F. (1999) Preliminary accuracy evaluation of a cesium fountain primary frequency standard at NIST. In: Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and The IEEE International Frequency Control Symposium, 12–15

    Google Scholar 

  36. Weyers S., Bauch A., Griebsch D., Hübner U., Schröder R., Tamm C. (1999) First results of PTB’s atomic caesium fountain. In: Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and The IEEE International Frequency Control Symposium, 16–19

    Google Scholar 

  37. Burt E., Swanson T., Ekstrom C. (1999) Cesium fountain development at USNO. In: Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and The IEEE International Frequency Control Symposium, 20–23

    Google Scholar 

  38. Whibberley P.B., Henderson D., Lea S.N. (1999) Development of a caesium fountain primary frequency standard at the NPL. In: Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and The IEEE International Frequency Control Symposium, 24–26

    Google Scholar 

  39. Huang M.S., Yao A., Peng J.L., Chen C.C., Hsu S., Hsiao J.M., Kou C., Liao C.S. (1999) Compact cesium atomic fountain clock. In: Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and The IEEE International Frequency Control Symposium, 27–29

    Google Scholar 

  40. Liji W., Changhua W., Bingying H., Mingshou L., Jin Q., Wangxi J. (1999) Design & preliminary results of NIM cesium fountain primary frequency standard. In: Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and The IEEE International Frequency Control Symposium, 30–33

    Google Scholar 

  41. Dudle G., Joyet A., Fretel E., Berthoud P., Thomann P. (1999) An alternative cold cesium frequency standard: The continuous fountain. In: Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and The IEEE International Frequency Control Symposium, 77–80

    Google Scholar 

  42. Kasevich M., Chu S. (1992) Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett. 69, 1741–1744

    Article  ADS  Google Scholar 

  43. Santarelli G., Laurent P., Lemonde P., Clairon A., Mann A.G., Chang S., Luiten A.N., Salomon C. (1999) Quantum projection noise in an atomic fountain: A high stability cesium frequency standard. Phys. Rev. Lett. 82, 4619–4622

    Article  ADS  Google Scholar 

  44. Simon E., Laurent P., Clairon A. (1998) Measurement of the Stark shift of the Cs hyperfine splitting in an atomic fountain. Phys. Rev. A. 57, 436–439

    Article  ADS  Google Scholar 

  45. Dicke R.H. (1953) The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472–473

    Article  ADS  Google Scholar 

  46. Dehmelt H.G. (1982) Mono-ion oscillator as potential ultimate laser frequency standard. IEEE Trans. Instrum. Meas. IM-31, 83–87

    ADS  Google Scholar 

  47. Drullinger R.E., Rolston S.L., Itano W.M. (1993) Primary atomic-frequency standards: New developments. In: Stone W.R. (Ed.) Review of Radio Science 1993-1996, Oxford, New York. Oxford University Press, 11–41

    Google Scholar 

  48. Blatt R., Gill P., Thompson R.C. (1992) Current perspectives on the physics of trapped ions. J. Mod. Opt. 39, 193–220

    Article  ADS  Google Scholar 

  49. Fisk P.T.H. (1997) Trapped-ion and trapped-atom microwave frequency standards. Rep. Prog. Phys. 60, 761–817

    Article  ADS  Google Scholar 

  50. Major F.G. (1998) The Quantum Beat. Springer-Verlag, New York, Berlin, Heidelberg

    Google Scholar 

  51. Paul W., Raether M. (1955) Das elektrische Massenfilter. Z. Phys. 140, 262–273

    Article  ADS  Google Scholar 

  52. Paul W. (1990) Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540

    Article  ADS  Google Scholar 

  53. Tamm C., Schnier D., Bauch A. (1995) Radio-frequency laser double-resonance spectroscopy of 171Yb ions and determination of line shifts of the ground-state hyperfine resonance. Appl. Phys. B. 60, 19–29

    Google Scholar 

  54. Major F.G., Werth G. (1973) High-resolution magnetic hyperfine resonance in harmonically bound ground-state 199Hg ions. Phys. Rev. Lett. 30, 1155–1158

    Article  ADS  Google Scholar 

  55. Cutler L.S., Giffard R.P., McGuire M.D. (1985) Thermalization of 199Hg ion macromotion by a light background gas in an rf quadrupole trap. Appl. Phys. B. 36, 137–142

    Article  Google Scholar 

  56. Tjoelker R.L., Prestage J.D., Maleki L. (1996) Record frequency stability with mercury in a linear ion trap. In: Bergquist J.C. (Ed.) Proceedings of the Fifth Symposium on Frequency Standards and Metrology, volume 31, Singapore, New Jersey, London, HongKong. World Scientific, 33–38

    Google Scholar 

  57. Helmcke J., Morinaga A., Ishikawa J., Riehle F. (1989) Optical frequency standards. IEEE Trans. Instrum. Meas. IM 38, 524–532

    Article  ADS  Google Scholar 

  58. Marmet L., Madej A.A., Siemsen K.J., Bernard J.E., Bradley G., Whitford B.G. (1997) Precision frequency measurement of the 2S[in1/2-2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity. IEEE Trans. Instrum. Meas. IM 46, 169–173

    Article  Google Scholar 

  59. Bernard J.E., Madej A.A., Marmet L., Whitford B.G., Siemsen K.J., Cundy S. (1999) Cs-based frequency measurement of a single, trapped ion transition in the visible region of the spectrum. Phys. Rev. Lett. 82, 3228–3231

    Article  ADS  Google Scholar 

  60. Peik E., Hollemann G., Walther H. (1994) Laser cooling and quantum jumps of a single indium ion. Phys. Rev. A. 49, 402–408

    Article  ADS  Google Scholar 

  61. Nagourney W., Torgerson J., Dehmelt H. (1999) Optical frequency standard based upon single laser-cooled Indium ion. In: Dubin D.H.E., Schneider D. (Eds.) Trapped charged particles and fundamental physics, volume 457 of AIP Conference Proceedings, Woodbury, New York. American Institute of Physics, 343–347

    Google Scholar 

  62. von Zanthier J., Abel J., Becker T., Fries M., Peik E., Walther H., Holzwarth R., Reichert J., Udem T., Hänsch T., Nevsky A., Skvortsov M., Bagayev S. (1999) Absolute frequency measurement of the 115In+ 5s2 1s0-5s5p 3p0 transition. Opt. Commun. 166, 57–63

    Article  ADS  Google Scholar 

  63. Rafac R.J., Young B.C., Cruz F.C., Beall J.A., Bergquist J.C., Itano W.M., Wineland D.J. (1999) 199Hg+ optical frequency standard: Progress report. In: Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and The IEEE International Frequency Control Symposium, 676–681

    Google Scholar 

  64. Taylor P., Roberts M., Gateva-Kostova S.V., Clarke R.B.M., Barwood G.P., Rowley W.R.C., Gill P. (1997) Investigation of the 2S1/2-2D5/2 clock transition in a single ytterbium ion. Phys. Rev. A. 56, 2699–2704

    Article  ADS  Google Scholar 

  65. Tamm C., Engelke D., Bühner V. (2000) Spectroscopy of the electric-quadrupole transition 2S1/2(F=0)-2D3/2(F=2) in trapped 171Yb+. Phys. Rev. A. accepted for publication

    Google Scholar 

  66. Roberts M., Taylor P., Barwood G.P., Gill P., Klein H.A., Rowley W.R.C. (1997) Observation of an electric octupole transition in a single ion. Phys. Rev. Lett. 78, 1876–1879

    Article  ADS  Google Scholar 

  67. Ertmer W., Blatt R., Hall J.L. (1983) Some candidate atoms and ions for frequency standards research using laser radiative cooling techniques. In: Phillips W.D. (Ed.) Laser Cooled and Trapped Atoms. U.S. National Bureau of Standards special publication Vol. 653, Reading, Massachusetts, 154–161

    Google Scholar 

  68. Hall J.L., Zhu M., Buch P. (1989) Prospects for using laser-prepared atomic fountains for optical frequency standards applications. J. Opt. Soc. Am. B. 6, 2194–2205

    Article  ADS  Google Scholar 

  69. Schmidt-Kaler F., Leibfried D., Seel S., Zimmermann C., König W., Weitz M., Hänsch T.W. (1995) High-resolution spectroscopy of the 1S — 2S transition of atomic hydrogen and deuterium. Phys. Rev. A. 51, 2789–2800

    Article  ADS  Google Scholar 

  70. Rolston S.L., Phillips W.D. (1991) Laser-cooled neutral atom frequency standards. Proceedings IEEE. 79, 943–951

    Google Scholar 

  71. Walhout M., Sterr U., Witte A., Rolston S.L. (1995) Lifetime of the metastable 6s [1/2]0 clock state in xenon. Opt. Lett. 20, 1192–1194

    Article  ADS  Google Scholar 

  72. Ruschewitz F., Peng J.L., Hinderthür H., Schaffrath N., Sengstock K., Ertmer W. (1998) Sub-kilohertz optical spectroscopy with a time domain atom interferometer. Phys. Rev. Lett. 80, 3173–3176

    Article  ADS  Google Scholar 

  73. Riehle F., Schnatz H., Lipphardt B., Zinner G., Trebst T., Helmcke J. (1999) The optical Calcium frequency standard. IEEE Trans. Instrum. Meas. IM 48, 613–617

    Article  Google Scholar 

  74. Oates C.W., Bondu F., Fox R.W., Hollberg L. (1999) A diode-laser optical frequency standard based on laser-cooled Ca atoms: Sub-kilohertz spectroscopy by optical shelving detection. Eur. Phys. J. D. 7, 449–460

    Article  ADS  Google Scholar 

  75. Dinneen T.P., Vogel K.R., Arimondo E., Hall J.L., Gallagher A. (1999) Cold collisions of Sr*-Sr in a magneto-optical trap. Phys. Rev. A. 59, 1216–1222

    Article  ADS  Google Scholar 

  76. Helmcke J., Snyder J.J., Morinaga A., Mensing F., Gläser M. (1987) New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator. Appl. Phys. B. 43, 85–91

    Google Scholar 

  77. Vassiliev V., Velichansky V., Kersten P., Trebst T., Riehle F. (1998) Subkilohertz enhanced-power diode-laser spectrometer in the visible. Opt. Lett. 23, 1229–1231

    Article  ADS  Google Scholar 

  78. Baklanov Y.V., Dubetsky B.Y., Chebotayev V.P. (1976) Non-linear Ramsey resonances in the optical region. Appl. Phys. 9, 171–173

    Article  ADS  Google Scholar 

  79. Bordé C.J., Salomon C., Avrillier S., Van Lerberghe A., Bréant C., Bassi D., Scoles G. (1984) Optical Ramsey fringes with travelling waves. Phys. Rev. A. 30, 1836–1848

    Article  ADS  Google Scholar 

  80. Bordé C.J. (1989) Atomic interferometry with internal state labelling. Phys. Lett. A. 140, 10–12

    Article  Google Scholar 

  81. Riehle F., Schnatz H., Lipphardt B., Zinner G., Trebst T., Binnewies T., Wilpers G., Helmcke J. (1999) The optical Ca frequency standard. In: Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and The IEEE International Frequency Control Symposium, 700–705

    Google Scholar 

  82. Schnatz H., Lipphardt B., Helmcke J., Riehle F., Zinner G. (1996) First phase-coherent frequency measurement of visible radiation. Phys. Rev. Lett. 76, 18–21

    Article  ADS  Google Scholar 

  83. Udem T., Huber A., Gross B., Reichert J., Prevedelli M., Weitz M., Hänsch T.W. (1997) Phase-coherent measurement of the hydrogen 1S-2S transition frequency with an optical frequency interval divider chain. Phys. Rev. Lett. 79, 2646–2649

    Article  ADS  Google Scholar 

  84. de Beauvoir B., Nez F., Julien L., Cagnac B., Biraben F., Touahri D., Hilico L., Acef O., Clairon A., Zondy J.J. (1997) Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: New determination of the Rydberg constant. Phys. Rev. Lett. 78, 440–443

    Article  ADS  Google Scholar 

  85. Quinn T.J. (1999) Practical realization of the de.nition of the metre (1997). Metrologia. 36, 211–244

    Article  ADS  Google Scholar 

  86. Udem T., Reichert J., Hänsch T.W., Kourogi M. (1998) Accuracy of optical frequency comb generators and optical frequency interval divider chains. Opt. Lett. 23, 1387–1389

    Article  ADS  Google Scholar 

  87. Telle H.R., Steinmeyer G., Dunlop A.E., Stenger J., Sutter D.H., Keller U. (1999) Carrier-envelope o.set phase control: A novel concept for absolute frequency measurement and ultra-short pulse generation. Appl. Phys. B. 69, 327–332

    Article  Google Scholar 

  88. L’Ecole Polytechnique, du Bureau des Longitudes (Ed.) (1890) Comptes Rendus des séances de la 1ère CGPM 1889. Quai des Grands-Augustins, 55, France. Gauthier-Villars et Fils

    Google Scholar 

  89. Bureau International des Poids et Mesures (Ed.) (1960) Comptes Rendus des séances de la 11e CGPM. Quai des Grands-Augustins, 55, France. Gauthier-Villars & Cie

    Google Scholar 

  90. Quinn T.J. (1993/94) Mise en pratique of the definition of the Metre (1992). Metrologia. 30, 523–541

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riehle, F. (2001). Clocks for Length and Time Measurement. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds) Gyros, Clocks, Interferometers...: Testing Relativistic Graviy in Space. Lecture Notes in Physics, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40988-2_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-40988-2_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41236-6

  • Online ISBN: 978-3-540-40988-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics