Skip to main content

Principles of Equivalence: Their Role in Gravitation Physics and Experiments That Test Them

  • Conference paper
  • First Online:
Gyros, Clocks, Interferometers...: Testing Relativistic Graviy in Space

Part of the book series: Lecture Notes in Physics ((LNP,volume 562))

Abstract

Modern formulations of equivalence principles provide the foundation for an efficient approach to understanding and organizing the structural features of gravitation field theories. Since theories’ predictions reflect differences in their structures, principles of equivalence also support an efficient experimental strategy for testing gravitation theories and for exploring the range of conceivable gravitation physics. These principles focus attention squarely on empirical consequences of the fundamental structural differences that distinguish one gravitation theory from another. Interestingly, the variety of such consequences makes it possible to design and perform experiments that test equivalence principles stringently but do so in markedly different ways than the most familiar experimental tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Newton: Philosophiae Naturalis Principia Mathematica (London 1686).

    Google Scholar 

  2. A. Einstein: Jahrb. Radioact. Elect. 4, 411 (1907).

    Google Scholar 

  3. L. Maleki: SpaceTime Mission: Clock Test of Relativity at four Solar Radii, this volume.

    Google Scholar 

  4. R.V. Eötvös, V. Pekár and E. Fekete: Beiträge zum Gesetz der Proportionalität von Trägheit und Gravität, Ann. Physik 68, 11 (1922).

    Article  Google Scholar 

  5. Y. Su, B.R. Heckel, E.G. Adelberger, J.H. Gundlach, M. Harris, G.L. Smith, and H.E. Swanson: New test of the universality of free fall, Phys. Rev. D 50, 3614 (1994).

    ADS  Google Scholar 

  6. N. Lockerbie, J. Mester, R. Torii, S. Vitale, and P. Worden: STEP: A Status Report, this volume, p.213.

    Google Scholar 

  7. A. Einstein: Preuss. Akad. Wiss Berlin Sitzber. 688 (1916).

    Google Scholar 

  8. J. Norton: General covariance and the foundations of general relativity: eight decades of dispute, Rep. Prog. Phys. 56, 791 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Gambini and J. Pullin: Nonstandard optics from quantum space-time, Phys. Rev. D 59, 124021 (1999).

    ADS  MathSciNet  Google Scholar 

  10. J. Ellis, N.E. Mavromatos and D.V. Nanopoulos: Probing models of quantum space-time foam, preprint gr-qc/9909085.

    Google Scholar 

  11. M.P. Haugan and C. Lämmerzahl: On the experimental foundations of the Maxwell equations, Ann. Phys. (Leipzig) 9, 119 (2000).

    Google Scholar 

  12. K. Nordtvedt: Qualitative relationship between clocks gravitational “red-shift” violatings and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975).

    ADS  Google Scholar 

  13. M.P. Haugan: Energy Conservation and the Principle of Equivalence, Ann. Phys. (N.Y.) 118, 156 (1979).

    Article  ADS  Google Scholar 

  14. C.M. Will: Theory and Experiment in Gravitation Physics, revised edition (Cambridge University Press, Cambridge 1993).

    Google Scholar 

  15. C.M. Will: The Confrontation between General Relativity and Experiment: A 1998 Update (Lecture notes from the 1998 SLAC Summer Institute on Particle Physics), gr-qc/9811036.

    Google Scholar 

  16. M.P. Haugan and C.M. Will: Modern tests of special relativity, Physics Today, May 1987, p. 69.

    Google Scholar 

  17. A.P. Lightman and D.L. Lee: Restricted Proof that theWeak Equivalence Principle Implies the Einstein Equivalence Principle, Phys. Rev. D 8, 364 (1973).

    ADS  Google Scholar 

  18. C.M. Will: Gravitational red-shift measurements as tests of nonmetric theories of gravity, Phys. Rev. D 10, 2330 (1974).

    ADS  MathSciNet  Google Scholar 

  19. M.D. Gabriel and M.P. Haugan: Testing the Einstein Equivalence Principle: Atomic clocks and local Lorentz invariance, Phys. Rev. D 41, 2943 (1990).

    ADS  Google Scholar 

  20. J.P. Turneaure, C.M. Will, B.F. Farrel, E.M. Mattison, and R.F.C. Vessot: Test of the principle of equivalence by a null gravitational red-shift experiment, Phys. Rev. 27, 1705 (1983).

    ADS  Google Scholar 

  21. C. Alvarez and R.B. Mann: Testing the Equivalence Principle in the Quantum Regime, preprint (1996), Honorable mention in the Gravity Research Foundation Essay Contest (and references cited therein).

    Google Scholar 

  22. J.E. Horvath, E.A. Logiudice, C. Riveros, and H. Vucetich: Einstein equivalence principle and theories of gravitation: A gravitationally modified standard model, Phys. Rev. D 38, 1754 (1988).

    ADS  MathSciNet  Google Scholar 

  23. W.-T. Ni: Equivalence Principles and Electromagnetism, Phys. Rev. Lett. 38, 301 (1977); Bull. Am. Phys. Soc. 19, 655 (1974); A Nonmetric Theory of Gravity, preprint, Montana State University, Bozeman, Montana, USA (1973), http://gravity5.phys.nthu.edu.tw.

  24. R.A. Puntigam, C. Lämmerzahl, and F.W. Hehl: Maxwell’s theory on a post-Riemannian spacetime and the equivalence principle, Class. Qaunt. Grav. 14, 1347 (1997).

    Article  MATH  ADS  Google Scholar 

  25. S. Hojman, M.P. Rosenbaum, and L.C. Shepley: Gauge invariance, minimal coupling, and torsion, Phys. Rev. D 17, 3141 (1978).

    ADS  MathSciNet  Google Scholar 

  26. C. Lämmerzahl, Ch.J. Bordé: Testing the Dirac equation, this volume, p. 463

    Google Scholar 

  27. C. Lämmerzahl: Quantum Tests of Foundations of General Relativity, Class. Quantum Grav. 14, 13 (1998).

    Article  Google Scholar 

  28. N.D. Hari Dass: Test for C, P, and T Nonconservation in Gravitaton, Phys. Rev. Lett. 36, 393 (1976).

    Article  ADS  Google Scholar 

  29. N.D. Hari Dass: Experimental Tests for Some Quantum Effects in Gravitation, Ann. Physics (N.Y.) 107, 337 (1977).

    Article  ADS  Google Scholar 

  30. A. Peres: Test of the equivalence principle with spin, Phys. Rev. D 18, 2739 (1978).

    ADS  Google Scholar 

  31. D. Colloday and V.A. Kostelecky: CPT-violation and the standard model, Phys. Rev. D 55, 6760 (1997).

    ADS  Google Scholar 

  32. D. Colloday and V.A. Kostelecky: Lorentz-violating extension of the standard model, Phys. Rev. D 55, 6760 (1997).

    ADS  Google Scholar 

  33. T. Damour and A.M. Polyakov: The string dilaton and a least action principle, Nucl. Physics B 423, 532(1994).

    Article  ADS  MathSciNet  Google Scholar 

  34. T. Damour and A.M. Polyakov: String Theory and Gravity, Gen. Rel. Grav. 12, 1171 (1996).

    MathSciNet  Google Scholar 

  35. T. Damour: Equivalence Principle and Clocks, to appear in the Proceedings of the 34th Rencontres de Moriond, “Gravitational Waves and Experimental Gravity”, January 1999, gr-qc/9904032.

    Google Scholar 

  36. J. Ellis, N.E. Mavromatos, and D.V. Nanopoulos: Probing models of quantum space-time foam, gr-qc/9909085.

    Google Scholar 

  37. J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, and G. Volkov: Gravitational-Recoil Effects on Fermion Propagation in Space-Time Foam, gr-qc/9911055.

    Google Scholar 

  38. J. Alfaro, H.A. Morales-Tecotl, and L.F. Urrutia: Quantum gravity corrections to neutrino propagation, Phys. Rev. Lett. 84, to appear (2000).

    Google Scholar 

  39. F.W. Hehl, P. von der Heyde, G.D. Kerlick, and J.M. Nester: General relativity with spin and torsion: Foundations and prospects, Rev. Mod. Phys. 48, 393 (1976).

    Article  ADS  Google Scholar 

  40. F.W. Hehl, J.D. McCrea, E.W. Mielke, and Y. Ne'eman: Metric-affine gauge theory of gravity: Field Equations, Noether Identities, World Spinors, and Breaking of Dilation Invariance, Phys. Rep. 258, 1 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  41. P. van Nieuwenhuizen: Supergravity, Phys. Rep. 68, 189 (1982).

    Article  Google Scholar 

  42. M.J. Du.: Kaluza-Klein theory in perspective, hep-th/9410046.

    Google Scholar 

  43. C.M. Will, C.M.: Violation of the Weak Equivalence Principle in Theories of Gravity with a Nonsymmetric Metric, Phys. Rev. Lett. 62, 369 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  44. M.D. Gabriel, M.P. Haugan, R.B. Mann, and J.H. Palmer: Nonsymmetric gravitation theories and local Lorentz invariance, Phys. Rev. D 91, 2465 (1991).

    ADS  Google Scholar 

  45. W. Vodel, H. Dittus, S. Nietzsche, H. Koch, J. v. Zameck Glyscinski, R. Neubert, S. Lochmann, C. Mehls, D. Lockowandt: High Sensitive DC SQUID Based Position Detectors for Application in Gravitational Experiments at the Drop Tower Bremen, this volume.

    Google Scholar 

  46. P. Touboul: Space Accelerometers Present Status, this volume, p.273.

    Google Scholar 

  47. R.C. Ritter, C.E. Goldblum, W.-T. Ni, G.T. Gillies, and C.C. Speake: Experimental test of equivalence principle with polarized masses, Phys. Rev. D 42, 977 (1990).

    ADS  Google Scholar 

  48. R.C. Ritter, L.I. Winkler, and G.T. Gillies: Search for Anomalous Spin-Dependent Forces with a Polarized-Mass Torsion Pendulum, Phys. Rev. Lett. 70, 701 (1993).

    Article  ADS  Google Scholar 

  49. F.C. Witteborn and W.M. Fairbank: Experimental Comparison of the Graviational Force on Freely Falling Electrons and Metallic Electrons, Phys. Rev. Lett. 19, 1049 (1967).

    Article  ADS  Google Scholar 

  50. L. Koester: Veriffication of the equivalence principle of gravitational and inertial mass for the neutron, Phys. Rev. D 14, 907 (1976).

    ADS  Google Scholar 

  51. J.-L. Staudenmann, S.A. Werner, R. Colella, A.W. Overhauser: Gravity and Inertia in Quantum Mechanics, Phys. Rev. A 21 1419 (1980).

    ADS  Google Scholar 

  52. T.E. Chupp, R.J. Hoara, R.A. Loveman, E.R. Oteiza, J.M. Richardson, and M.E. Wagshul: Results of a New Test of Local Lorentz Invariance: A Search for Mass Anisotropy in 21Ne, Phys. Rev. Lett. 63, 1541 (1989).

    Article  ADS  Google Scholar 

  53. C. Lämmerzahl: Constraints on space-time torsion from Hughes-Drever experiments, Phys. Lett. A 228, 223 (1997).

    ADS  Google Scholar 

  54. B. Mashhoon: Neutron Interferometry in a Rotating Frame of Reference, Phys. Rev. Lett. 61, 2639 (1988).

    Article  ADS  Google Scholar 

  55. B. Mashhoon: On the coupling of intrinsic spin with the rotation of the earth, Phys. Lett. A 198, 9 (1995).

    ADS  Google Scholar 

  56. B.J. Venema, P.K. Majumder, S.K. Lamoreaux, B.R. Heckel, and E.N. Fortson: Search for a Coupling of the Earth’s Gravitational Field to Nuclear Spins in Atomic Mercury, Phys. Rev. Lett. 68, 135 (1992).

    Article  ADS  Google Scholar 

  57. R.F.C. Vessot, M.W. Levine, E.M. Mattison, E.L. Blomberg, T.E. Hoffmann, G.U. Nystrom, B.F. Farrel, R. Decher, P.B. Eby, C.R. Baughter, J.W. Watts, D.L. Teuber, and F.D. Wills: Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser, Phys. Rev. Lett. 45, 2081 (1980).

    Article  ADS  Google Scholar 

  58. R. Grieser, R. Klein, G. Huber, S. Dickopf, I. Klaft, P. Knobloch, P. Merz, F. Albrecht, M. Grieser, D. Habs, D. Schwalm, and T. KĂĽhl: A test of special relativity with stored lithium ions, Appl. Phys. B 59, 127 (1994).

    Article  ADS  Google Scholar 

  59. J.D. Prestage, R.L. Tjoelker, and L. Maleki: Atomic clocks and variations of the fine structure constant, Phys. Rev. Lett. 74, 3511 (1995).

    Article  ADS  Google Scholar 

  60. B.E. Schaefer: Severe limits on variations of the speed of light with frequency, Phys. Rev. Lett. 82, 4964 (1999).

    Article  ADS  Google Scholar 

  61. M.P. Haugan and T.F. Kauffmann: A New Test of the Einstein Equivalence Principle and the Isotropy of Space, Phys. Rev. D 52, 3168 (1995).

    ADS  Google Scholar 

  62. S.D. Billet et al.: Limits to quantum gravity effects on energy dependence of the speed of light from observations of TeV flares in active galaxies, Phys. Rev. Lett. 83, 2108 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haugan, M.P., Lämmerzahl, C. (2001). Principles of Equivalence: Their Role in Gravitation Physics and Experiments That Test Them. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds) Gyros, Clocks, Interferometers...: Testing Relativistic Graviy in Space. Lecture Notes in Physics, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40988-2_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-40988-2_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41236-6

  • Online ISBN: 978-3-540-40988-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics