Engineering Drawing Database Retrieval Using Statistical Pattern Spotting Techniques

  • Stefan Müller
  • Gerhard Rigoll
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1941)


An experimental mechanical engineering drawing database system, which allows a user to retrieve images by presenting sketches or shapes which represent details such as e.g. screws or holes, is presented in this paper. Due to the use of novel augmented pseudo 2-D Hidden Markov Models with filler states, images can be retrieved, where the detail that corresponds to the query is embedded in e.g. hatching or is connected to other elements in the image. The proposed technique achieves a good performance which is demonstrated by a number of query and retrieval examples in this paper.


Hide Markov Model Discrete Cosine Transform Image Retrieval Query Image Viterbi Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Flickner et al., “Query by Image and Video Content: The QBIC System”, IEEE Computer Magazine, 1995, pp. 23–32. 246Google Scholar
  2. 2.
    A. Del Bimbo and P. Pala, “Visual Image Retrieval by Elastic Matching of User Sketches”, IEEE Trans. PAMI, Vol. 19, No. 2, 1997, pp. 121–132. 246Google Scholar
  3. 3.
    H.-C. Lin, L.-L. Wang, and S.-N. Yang, “Color Image Retrieval Based on Hidden Markov Models”, IEEE Trans. on Image Processing, Vol. 6, No. 2, Feb. 1997, pp. 332–339. 246CrossRefGoogle Scholar
  4. 4.
    S. Müller, S. Eickeler, G. Rigoll, “Image Database Retrieval of Rotated Objects by User Sketch,” In Proc. IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL), Santa Barbara, 1998, pp. 40–44. 246, 247Google Scholar
  5. 5.
    K.-H. Bode, “Konstruktions-Atlas: Werksto.-u. verfahrensgerecht konstruieren”, Hoppenstedt TechnikT abellen Verl., 1988. 246, 247, 252Google Scholar
  6. 6.
    S. Ablameyko, V. Bereishik, O. Frantskevich, M. Homenko, N. Paramonova, “Algorithms for Recognition of the Main Engineering Drawing Entities”, In Proc. Intern. Conference on Document Analysis and Recognition (ICDAR), 1997, Ulm (Germany), pp. 776–779. 247Google Scholar
  7. 7.
    R. Kasturi, S. T. Bow, W. El-Masri, J. Shah, J. R. Gattiker, U. B. Mokate, “A System for Interpretation of Line Drawings”, IEEE Trans. on PAMI, Vol. 12, No. 10, 1990, pp. 978–992. 247Google Scholar
  8. 8.
    S. Müller, S. Eickeler, Ch. Neukirchen, B. Winterstein, “Segmentation and Classification of Hand-Drawn Pictograms in Cluttered Scenes — An Integrated Approach”, In Proc. IEEE Intern. Conf. on Acoustics, Speech, and Signal Processing, Phoenix, 1999, pp. 3489–3492. 247, 248Google Scholar
  9. 9.
    S. Kuo and O. Agazzi, “Keyword Spotting in Poorly Printed Printed Documents Using Pseudo 2-D Hidden Markov Models”, IEEE Trans. on PAMI, Vol. 13, No. 11, 1991, pp. 1172–1184. 247, 248, 249Google Scholar
  10. 10.
    L. R. Rabiner and B. H. Juang, “An Introduction to Hidden Markov Models”, IEEE ASSP Magazine, 1986, pp. 4–16. 247Google Scholar
  11. 11.
    R. Seiler, M. Schenkel and F. Eggimann, “O.-Line Cursive Handwriting Recognition Compared with On-Line Recognition”, In Proc. IEEE Intern. Conference on Pattern Recognition (ICPR), Vol. IV, 1996, pp. 505–509. 247, 248Google Scholar
  12. 12.
    F. S. Samaria, “Face Recognition Using Hidden Markov Models”, Ph. D. Thesis, Cambridge University, 1994. 248, 249Google Scholar
  13. 13.
    Y. He and A. Kundu, “2-D Shape Classification Using Hidden Markov Model”, IEEE Trans. on PAMI, Vol. 13, No. 11, 1991, pp. 1172–1184. 248Google Scholar
  14. 14.
    S.-J. Young, “The General Use of Tying in Phoneme-Based HMM Speech Recognisers”, In Proc. IEEE Intern. Conference on Acoustics, Speech and Signal Processing, 1992, pp. 569–572. 250Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Stefan Müller
    • 1
  • Gerhard Rigoll
    • 1
  1. 1.Department of Computer Science, Faculty of Electrical EngineeringGerhard-Mercator-University DuisburgDuisburgGermany

Personalised recommendations