Advertisement

Combination of Invariant Pattern Recognition Primitives on Technical Documents

  • Sébastien Adam
  • Jean-Marc Ogier
  • Claude Cariou
  • Joël Gardes
  • Rémy Mullot
  • Yves Lecourtier
Conference paper
  • 364 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1941)

Abstract

This paper deals with a particular aspect of a technical document interpretation device: the recognition of multi-oriented and multi-scaled characters and symbols. The adopted methodology is based on original descriptors, relying on the computation of the Mellin Fourier Transform. These descriptors are then combined with classical invariant through the use of Genetic Algorithms. The application frame of this study is the interpretation of the documents of the French telephonic operator France-Telecom for which the recognition of symbols constitutes a crucial point for a robust interpretation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  1. 1.
    S. Adam, J. M. Ogier, C. Cariou, R. Mullot, J. Gardes, Y. Lecourtier, Multi-Scaled and Multi Oriented Character Recognition: An Original Strategy, Proceedings of ICDAR 99, Bangalore, India, 45–48, 1999Google Scholar
  2. 2.
    M. Teague, Image analysis via the general theory of moments, Journal of Optical Society of America, 70, 920–930, 1980.MathSciNetGoogle Scholar
  3. 3.
    E. Menu, L. Lefrere, Y. Lecourtier, A New Method of Distorsion Invariant Character Recognition, Proceedings of IAPR 1992, La Hague, Vol. 2, 599–602, 1992.Google Scholar
  4. 4.
    J.-M. Ogier, Contribution à l’analyse automatique de documents cartographiques: interprétation de données cadastrales, Thèse de Doctorat, Université de Rouen, 1994.Google Scholar
  5. 5.
    O. D. Trier, A. K. Jain, T. Taxt, Features extraction methods for character recognition-A Survey, Pattern Recognition, 29, 641–662, 1996.CrossRefGoogle Scholar
  6. 6.
    F. Ghorbel, A complete invariant description for gray level images by the harmonic analysis approach, Pattern Recognition Letters 15, pp 1043–1051, 1994.CrossRefGoogle Scholar
  7. 7.
    A. Khotanzad and Y. H. Hong, Rotation Invariant image recognition using features selected via a systematic method, Pattern Recognition 23 1089–1101, 1990.CrossRefGoogle Scholar
  8. 8.
    G. Ravichandran, M. Trivedi, Circular-Mellin Features for Texture Segmentation, IEEE Trans. on Image Processing, 1995.Google Scholar
  9. 9.
    S. O. Belkasim, M. Shridar and A. Ahmadi, Pattern Recognition with moment invariants: A comparative study and new results, Pattern Recognition 24, 1117–1138, 1991.CrossRefGoogle Scholar
  10. 10.
    N. Kita, Object locating based on concentric circular description, Proceedings of 11th IEEE International Conference of Pattern Recognition, Den Haag, Vol 1, 637–641, 1992.Google Scholar
  11. 11.
    S. A. Dudani, K. J. Bredding, R. M. McGhee, Aircraft identification by moment invariants, IEEE Transaction Computer, C-26, 39–45, 1977.CrossRefGoogle Scholar
  12. 12.
    D. Zongker and A. Jain, Algorithms for Feature Selection: An Evaluation, Proceedings of ICPR 96, Vol II, 18–22, 1996Google Scholar
  13. 13.
    W. Siedlecki and J. Sklansky. A Note on Genetic Algorithms for Large-Scale Feature Selection, Pattern Recognition Letters, 10, 335–347, 1989.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Sébastien Adam
    • 2
    • 3
  • Jean-Marc Ogier
    • 2
  • Claude Cariou
    • 1
  • Joël Gardes
    • 3
  • Rémy Mullot
    • 2
  • Yves Lecourtier
    • 2
  1. 1.LASTI-Groupe ImageENSSATLannion
  2. 2.PSI-LA3IUniversité de RouenMont Saint Aignan
  3. 3.CNET - DES/OLI - 6Belfort Cedex

Personalised recommendations