Advertisement

Stable and Robust Vectorization: How to Make the Right Choices

  • Karl Tombre
  • Christian Ah-Soon
  • Philippe Dosch
  • Gérald Masini
  • Salvatore Tabbone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1941)

Abstract

As a complement to quantitative evaluation methods for raster-to-graphics conversion, we discuss in this paper some qualitative elements which should be taken into account when choosing the different steps of one’s vectorization method. We stress the importance of having robust methods and stable implementations, and we base ourselves extensively on our own implementations and tests, concentrating on methods designed to have few, if any, parameters.

Keywords

IEEE Transaction Medial Axis Junction Point Vectorization Method Vectorization Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Ah-Soon and K. Tombre. Network-Based Recognition of Architectural Symbols. In A. Amin, D. Dori, P. Pudil, and H. Freeman, editors, Advances in Pattern Recognition (Proceedings of Joint IAPR Workshops SSPR’98 and SPR’98, Sydney, Australia), volume 1451 of Lecture Notes in Computer Science, pages 252–261, August 1998. 13CrossRefGoogle Scholar
  2. 2.
    D. Antoine, S. Collin, and K. Tombre. Analysis of Technical Documents: The REDRAW System. In H. S. Baird, H. Bunke, and K. Yamamoto, editors, Structured Document Image Analysis, pages 385–402. Springer-Verlag, Berlin/Heidelberg, 1992. 7Google Scholar
  3. 3.
    H. Asada and M. Brady. The Curvature Primal Sketch. IEEE Transactions on PAMI, 8(1):2–14, 1986. 12Google Scholar
  4. 4.
    G. Borgefors. Distance Transforms in Digital Images. Computer Vision, Graphics and Image Processing, 34:344–371, 1986. 6CrossRefGoogle Scholar
  5. 5.
    J. Canny. A Computational Approach to Edge Detection. IEEE Transactions on PAMI, 8(6):679–698, 1986. 9Google Scholar
  6. 6.
    Y. Chen, N. A. Langrana, and A. K. Das. Perfecting Vectorized Mechanical Drawings. Computer Vision and Image Understanding, 63(2):273–286, March 1996. 16CrossRefGoogle Scholar
  7. 7.
    A. K. Chhabra, V. Misra, and J. Arias. Detection of Horizontal Lines in Noisy Run Length Encoded Images: The FAST Method. In Kasturi and Tombre [18], pages 35–48. 16Google Scholar
  8. 8.
    A. K. Chhabra and I. T. Phillips. The Second International Graphics Recognition Contest-Raster to Vector Conversion: A Report. In K. Tombre and A. K. Chhabra, editors, Graphics Recognition-Algorithms and Systems, volume 1389 of Lecture Notes in Computer Science, pages 390–410. Springer-Verlag, April 1998. 4Google Scholar
  9. 9.
    T. J. Davis. Fast Decomposition of Digital Curves into Polygons Using the Haar Transform. IEEE Transactions on PAMI, 21(8):786–790, August 1999. 16Google Scholar
  10. 10.
    G. Sanniti di Baja. Well-Shaped, Stable, and Reversible Skeletons from the (3,4)-Distance Transform. Journal of Visual Communication and Image Representation, 5(1):107–115, 1994. 6, 7CrossRefGoogle Scholar
  11. 11.
    D. Dori. Orthogonal Zig-Zag: an Algorithm for Vectorizing Engineering Drawings Compared with Hough Transform. Advances in Engineering Software, 28(1):11–24, 1997. 7CrossRefGoogle Scholar
  12. 12.
    D. Dori and W. Liu. Sparse Pixel Vectorization: An Algorithm and Its Performance Evaluation. IEEE Transactions on PAMI, 21(3):202–215, March 1999. 7Google Scholar
  13. 13.
    Ph. Dosch, G. Masini, and K. Tombre. Improving Arc Detection in Graphics Recognition. In Proceedings of the 15th International Conference on Pattern Recognition, Barcelona (Spain), September 2000. To appear. 5Google Scholar
  14. 14.
    J. G. Dunham. Optimum Uniform Piecewise Linear Approximation of Planar Curves. IEEE Transactions on PAMI, 8(1):67–75, 1986. 12Google Scholar
  15. 15.
    L. A. Fletcher and R. Kasturi. A Robust Algorithm for Text String Separation from Mixed Text/Graphics Images. IEEE Transactions on PAMI, 10(6):910–918, 1988. 5Google Scholar
  16. 16.
    O. Hori and A. Okazaki. High QualityV ectorization Based on a Generic Object Model. In H. S. Baird, H. Bunke, and K. Yamamoto, editors, Structured Document Image Analysis, pages 325–339. Springer-Verlag, Heidelberg, 1992. 11Google Scholar
  17. 17.
    R. D. T. Janssen and A. M. Vossepoel. Adaptive Vectorization of Line Drawing Images. Computer Vision and Image Understanding, 65(1):38–56, January 1997. 16CrossRefGoogle Scholar
  18. 18.
    R. Kasturi and K. Tombre, editors. Graphics Recognition-Methods and Applications, volume 1072 of Lecture Notes in Computer Science. Springer-Verlag, May 1996. 17, 18Google Scholar
  19. 19.
    L. Lam, S.-W. Lee, and C. Y. Suen. Thinning Methodologies-A Comprehensive Survey. IEEE Transactions on PAMI, 14(9):869–885, September 1992. 6Google Scholar
  20. 20.
    L. Lam and C. Y. Suen. An Evaluation of Parallel Thinning Algorithms for Character Recognition. IEEE Transactions on PAMI, 17(9):914–919, September 1995. 4Google Scholar
  21. 21.
    X. Lin, S. Shimotsuji, M. Minoh, and T. Sakai. Efficient Diagram Understanding with Characteristic Pattern Detection. Computer Vision, Graphics and Image Processing, 30:84–106, 1985. 7CrossRefGoogle Scholar
  22. 22.
    C. W. Niblack, P. B. Gibbons, and D. W. Capson. Generating Skeletons and Centerlines from the Distance Transform. CVGIP: Graphical Models and Image Processing, 54(5):420–437, September 1992. 6CrossRefGoogle Scholar
  23. 23.
    I. T. Phillips and A. K. Chhabra. Empirical Performance Evaluation of Graphics Recognition Systems. IEEE Transactions on PAMI, 21(9):849–870, September 1999. 4Google Scholar
  24. 24.
    M. Röösli and G. Monagan. Adding Geometric Constraints to the Vectorization of Line Drawings. In Kasturi and Tombre [18], pages 49–56. 16Google Scholar
  25. 25.
    P. L. Rosin. Techniques for Assessing Polygonal Approximation of Curves. IEEE Transactions on PAMI, 19(6):659–666, June 1997. 12, 13Google Scholar
  26. 26.
    P. L. Rosin and G. A. West. Segmentation of Edges into Lines and Arcs. Image and Vision Computing, 7(2):109–114, May 1989. 12, 13, 15CrossRefGoogle Scholar
  27. 27.
    K. Tombre, C. Ah-Soon, Ph. Dosch, A. Habed, and G. Masini. Stable, Robust and Off-the-Shelf Methods for Graphics Recognition. In Proceedings of the 14th International Conference on Pattern Recognition, Brisbane (Australia), pages 406–408, August 1998. 3Google Scholar
  28. 28.
    Ø. Due Trier and A. K. Jain. Goal-Directed Evaluation of Binarization Methods. IEEE Transactions on PAMI, 17(12):1191–1201, December 1995. 4Google Scholar
  29. 29.
    P. Vaxivière and K. Tombre. Subsampling: A Structural Approach to Technical Document Vectorization. In D. Dori and A. Bruckstein, editors, Shape, Structure and Pattern Recognition (Post-proceedings of IAPR Workshop on Syntactic and Structural Pattern Recognition, Nahariya, Israel), pages 323–332. World Scientific, 1995. 7, 10, 11, 14Google Scholar
  30. 30.
    K. Wall and P. Danielsson. A Fast Sequential Method for Polygonal Approximation of Digitized Curves. Computer Vision, Graphics and Image Processing, 28:220–227, 1984. 12, 13, 15CrossRefGoogle Scholar
  31. 31.
    S.-C. Zhu. Stochastic Jump-Diffusion Process for Computing Medial Axes in Markov Random Fields. IEEE Transactions on PAMI, 21(11):1158–1169, November 1999. 16Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Karl Tombre
    • 1
  • Christian Ah-Soon
    • 1
  • Philippe Dosch
    • 1
  • Gérald Masini
    • 1
  • Salvatore Tabbone
    • 1
  1. 1.LORIAVandœuvre-lès-Nancy CEDEXFrance

Personalised recommendations