Skip to main content

VIII. Protein Folding Simulations by a Generalized-Ensemble Algorithm Based on Tsallis Statistics

  • Chapter
  • First Online:
Nonextensive Statistical Mechanics and Its Applications

Part of the book series: Lecture Notes in Physics ((LNP,volume 560))

Abstract

We review uses of Tsallis statistical mechanics as a generalized-ensemble simulation algorithm in the protein folding problem. A simulation based on this algorithm performs a random walk in energy space, and it allows one not only to find the global-minimum-energy conformation but also to obtain probability distributions in canonical ensemble for a wide temperature range from only one simulation run. The folding properties of a penta peptide, Met-enkephalin, are studied by this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Vásquez, G. Némethy, and H. A. Scheraga, Chem. Rev. 94, 2183 (1994).

    Article  Google Scholar 

  2. M. Levitt, Curr. Opin. Struct. Biol. 6, 193 (1996).

    Article  Google Scholar 

  3. C. J. Epstain, R. F. Goldberger, and C. B. Anfinsen, Cold Spring Harbor Symp. Quant. Biol. 28439(1963).

    Google Scholar 

  4. C. Levinthal, J. Chim. Phys. 65, 44 (1968).

    Google Scholar 

  5. D. B. Wetlaufer, Proc. Natl. Acad. Sci. USA 70, 691 (1973).

    Article  ADS  Google Scholar 

  6. B. J. Berne and J. E. Straub, Curr. Opin. Struct. Biol. 7, 181 (1997).

    Article  Google Scholar 

  7. Y. Okamoto, Recent Res. Devel. in Pure & Applied Chem. 2, 1 (1998).

    Google Scholar 

  8. U. H. E. Hansmann and Y. Okamoto, Curr. Opin. Struct. Biol. 9, 177 (1999).

    Article  Google Scholar 

  9. U. H. E. Hansmann and Y. Okamoto, in Ann. Rev. Comput. Phys. VI, ed. by D. Stauffer (World Scientific, Singapore, 1999) pp. 129–157.

    Google Scholar 

  10. B. A. Berg and T. Neuhaus, Phys. Lett. B 267, 249 (1991); Phys. Rev. Lett. 68, 9 (1992).

    Article  ADS  Google Scholar 

  11. U. H. E. Hansmann and Y. Okamoto, J.Comput. Chem. 14, 1333 (1993).

    Article  Google Scholar 

  12. A. P. Lyubartsev, A. A. Martinovski, S. V. Shevkunov, and P. N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992).

    Article  ADS  Google Scholar 

  13. E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).

    Article  ADS  Google Scholar 

  14. B. Hesselbo and R. B. Stinchcombe, Phys. Rev. Lett. 74, 2151 (1995).

    Article  ADS  Google Scholar 

  15. U. H. E. Hansmann and Y. Okamoto, J. Comput. Chem. 18, 920 (1997).

    Article  Google Scholar 

  16. U. H. E. Hansmann, Y. Okamoto, and F. Eisenmenger, Chem. Phys. Lett. 259, 321 (1996).

    Article  ADS  Google Scholar 

  17. N. Nakajima, H. Nakamura, and A. Kidera, J. Phys. Chem. 101, 817 (1997).

    Article  Google Scholar 

  18. C. Bartels and M. Karplus, J. Phys. Chem. B 102, 865 (1998).

    Article  Google Scholar 

  19. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. U. H. E. Hansmann and Y. Okamoto, Phys. Rev. E 56, 2228 (1997).

    Article  ADS  Google Scholar 

  21. U. H. E. Hansmann, F. Eisenmenger, and Y. Okamoto, Chem. Phys. Lett. 297, 374 (1998).

    Article  ADS  Google Scholar 

  22. U. H. E. Hansmann and Y. Okamoto, Braz. J. Phys. 29, 187 (1999).

    Article  Google Scholar 

  23. I. Andricioaei and J. E. Straub, Phys. Rev. E 53, R3055 (1996).

    Article  ADS  Google Scholar 

  24. I. Andricioaei and J. E. Straub, J. Chem. Phys. 107, 9117 (1997).

    Article  ADS  Google Scholar 

  25. U. H. E. Hansmann, Physica A 242, 250 (1997).

    Article  ADS  Google Scholar 

  26. F. A. Momany, R. F. McGuire, A. W. Burgess, and H. A. Scheraga, J. Phys. Chem. 79, 2361 (1975).

    Article  Google Scholar 

  27. G. Némethy, M. S. Pottle, and H. A. Scheraga, J. Phys. Chem. 87, 1883 (1983).

    Article  Google Scholar 

  28. M.J. Sippl, G. Némethy, and H. A. Scheraga, J. Phys. Chem. 88, 6231 (1984).

    Article  Google Scholar 

  29. H. Kawai, Y. Okamoto, M. Fukugita, T. Nakazawa, and T. Kikuchi, Chem. Lett. 1991, 213 (1991).

    Article  Google Scholar 

  30. Y. Okamoto, M. Fukugita, T. Nakazawa, and H. Kawai, Protein Eng. 4, 639 (1991).

    Article  Google Scholar 

  31. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

  32. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).

    Article  ADS  Google Scholar 

  33. U. H. E. Hansmann and Y. Okamoto, J. Phys. Soc. Jpn. 63, 3945 (1994); Physica A 212, 415 (1994).

    Article  ADS  Google Scholar 

  34. Z. Li and H. A. Scheraga, Proc. Natl. Acad. Sci. USA 84, 6611 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  35. Y. Okamoto, T. Kikuchi, and H. Kawai, Chem. Lett.1992, 1275 (1992).

    Article  Google Scholar 

  36. P. J. Kraulis, J. Appl. Cryst. 24, 946 (1991).

    Article  Google Scholar 

  37. D. Bacon and W. F. Anderson, J. Mol. Graphics 6, 219 (1988).

    Article  Google Scholar 

  38. E. A. Merritt and M. E. P. Murphy, Acta Cryst. D 50, 869 (1994).

    Article  Google Scholar 

  39. M. Masuya, in preparation.

    Google Scholar 

  40. F. Eisenhaber, P. Lijnzaad, P. Argos, C. Sander, and M. Scharf, J. Comput. Chem. 16, 273 (1995).

    Article  Google Scholar 

  41. U. H. E. Hansmann, M. Masuya, and Y. Okamoto, Proc. Natl. Acad. Sci. USA 9410652 (1997).

    Article  ADS  Google Scholar 

  42. U. H. E. Hansmann, Y. Okamoto, and J. N. Onuchic, PROTEINS: Struct. Funct.Genet. 34, 472 (1999).

    Article  Google Scholar 

  43. F. Eisenmenger and U. H. E. Hansmann, J. Phys. Chem. B 101, 3304 (1997).

    Article  Google Scholar 

  44. A. Mitsutake, U. H. E. Hansmann, and Y. Okamoto, J. Mol. Graphics Mod. 16226 (1998).

    Google Scholar 

  45. R. A. Sayle and E. J. Milner-White, TIBS 20, 374 (1995).

    Google Scholar 

  46. J. N. Onuchic, Z. Luthey-Schulten, and P.G. Wolynes, Ann. Rev. Phys. Chem. 48, 545 (1997).

    Article  ADS  Google Scholar 

  47. K. A. Dill and H. S. Chan, Nature Struct. Biol. 4, 10 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okamoto, Y., Hansmann, U. (2001). VIII. Protein Folding Simulations by a Generalized-Ensemble Algorithm Based on Tsallis Statistics. In: Abe, S., Okamoto, Y. (eds) Nonextensive Statistical Mechanics and Its Applications. Lecture Notes in Physics, vol 560. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40919-X_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-40919-X_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41208-3

  • Online ISBN: 978-3-540-40919-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics