Skip to main content

I. Nonextensive Statistical Mechanics and Thermodynamics: Historical Background and Present Status

  • Chapter
  • First Online:
Nonextensive Statistical Mechanics and Its Applications

Part of the book series: Lecture Notes in Physics ((LNP,volume 560))

Abstract

The domain of validity of standard thermodynamics and Boltzmann-Gibbs statistical mechanics is focused on along a historical perspective. It is then formally enlarged in order to hopefully cover a variety of anomalous systems. The generalization concerns nonextensive systems, where nonextensivity is understood in the thermodynamical sense. This generalization was first proposed in 1988 inspired by the probabilistic description of multifractal geometry, and has been intensively studied during this decade. In the present effort, we describe the formalism, discuss the main ideas, and then exhibit the present status in what concerns theoretical, experimental and computational evidences and connections, as well as some perspectives for the future. The whole review can be considered as an attempt to clarify our current understanding of the foundations of statistical mechanics and its thermodynamical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. C. Tsallis, in Nonextensive Statistical Mechanics and Thermodynamics, eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 1 (1999) [accessible at http://sbf.if.usp.br/WWWpages/Journals/BJP/Vol29/Num1/index.htm]. The present review is an extended and updated version of the one just quoted.

  3. F. Takens, Structures in dynamics—Finite dimensional deterministic studies, eds. H. W. Broer, F. Dumortier, S. J. van Strien, and F. Takens (North-Holland, Amsterdam, 1991), p. 253. [In his words: “The values of pi are determined by the following dogma: if the energy of the system in the ith state is Ei and if the temperature of the system is T then: pi = exp/kT/Z(T), here Z(T) =_i exp/kT, (this last constant is taken so that _i pi = 1). This choice of pi is called Gibbs distribution. We shall give no justification for this dogma; even a physicist like Ruelle disposes of this question as “deep and incompletely clarified”.”]

    Google Scholar 

  4. N. Krylov, Nature 153, 709 (1944). [In his words: “In the present investigation, the notion of ergodicity is ignored. I reject the ergodical hypothesis completely: it is both insufficient and unnecessary for statistics. I use, as starting point, the notion of motions of the mixing type, and show that the essential mechanical condition for the applicability of statistics consists in the requirement that in the phase space of the system all the regions with a sufficiently large size should vary in the course of time in such a way that while their volume remains constant—according to Liouville’s theorem—their parts should be distributed over the whole phase space (more exactly over the layer, corresponding to given values of the single-valued integrals of the motion) with a steadily increasing degree of uniformity. (...) The main condition of mixing, which ensures the fulfillment of this condition, is a sufficiently rapid divergence of the geodetic lines of this Riemann space (that is, of the paths of the system in the n-dimensional configuration space), namely, an exponential divergence (cf. Nopf1).”]. For full details on this pioneering approach see N.S. Krylov, Works on the Foundations of Statistical Physics, translated by A. B. Migdal, Ya. G. Sinai, and Yu. L. Zeeman, Princeton Series in Physics (Princeton University Press, Princeton, 1979).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. R. Balescu, Equilibrium and Non-equilibrium Statistical Mechanics (Wiley, New York, 1975), p. 727. [In his words: “It therefore appears from the present discussion that the mixing property of a mechanical system is much more important for the understanding of statistical mechanics than the mere ergodicity. (...) A detailed rigorous study of the way in which the concepts of mixing and the concept of large numbers of degrees of freedom in.uence the macroscopic laws of motion is still lacking.”]

    Google Scholar 

  6. M. Courbage and D. Hamdan, Phys. Rev. Lett. 74, 5166 (1995).

    Article  ADS  Google Scholar 

  7. J.R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics, Cambridge Lecture Notes in Physics 14, eds. P. Goddard and J. Yeomans (Cambridge University Press, Cambridge, 1999), footnote on p. 9. [In his words: “It is worth mentioning that there are examples of mixing systems with no non-zero Liapunov exponents. The concepts of ergodicity, mixing, and chaos can be quite subtle.”]

    Google Scholar 

  8. N. G. van Kampen, Braz. J. Phys. 28, 90 (1998) [accessible at http://www.sbf.if.usp.br/WWWpages/Journals/BJP/Vol28/Num2/index.htm].

    Article  ADS  Google Scholar 

  9. G. M. Zaslavsky, Physics Today 52, 39 (August 1999).

    Google Scholar 

  10. L. Tisza, Ann. Phys. 13, 1 (1961). [Or, in Generalized Thermodynamics (MIT Press, Cambridge, 1966), p. 123]. [In his words: “The situation is different for the additivity postulate P a2, the validity of which cannot be inferred from general principles.We have to require that the interaction energy between thermodynamic systems be negligible. This assumption is closely related to the homogeneity postulate P d1. From the molecular point of view, additivity and homogeneity can be expected to be reasonable approximations for systems containing many particles, provided that the intramolecular forces have a short range character.”]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. H. Grad, in Rarefied Gas Dynamics, ed. J. A. Laurmann (Academic Press, New York, 1963), p. 26. [A variety of anomalous effects on the spectrum of the collision operator of the Boltzmann equation, due to the range of the forces, are discussed in this article.]

    Google Scholar 

  12. M. E. Fisher, Arch. Rat. Mech. Anal. 17, 377 (1964); J. Chem. Phys. 42, 3852 (1965); J. Math. Phys. 6, 1643 (1965); M. E. Fisher and D. Ruelle, J. Math. Phys. 7, 260 (1966); M. E. Fisher and J. L. Lebowitz, Commun. Math. Phys. 19, 251 (1970).

    Article  Google Scholar 

  13. P.T. Landsberg, Thermodynamics and Statistical Mechanics (Oxford University Press, Oxford, 1978; also Dover, New York, 1990), p. 102. [In his words: “The presence of long-range forces causes important amendments to thermodynamics, some of which are not fully investigated as yet.”]

    Google Scholar 

  14. W. Thirring, Foundations of Physics 20, 1103 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  15. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981), footnote on p. 114. [In his words: “Actually an additional stability criterion is needed, see M. E. Fisher, Archives Rat. Mech. Anal. 17, 377 (1964); D. Ruelle, Statistical Mechanics, Rigorous Results (Benjamin, New York 1969). A collection of point particles with mutual gravitation is an example where this criterion is not satisfied, and for which therefore no statistical mechanics exists.”]

    MATH  Google Scholar 

  16. P. T. Landsberg, J. Stat. Phys. 35, 159 (1984); L. G. Ta., Celestial Mechanics (John Wiley and Sons, New York, 1985), p. 437; W. C. Saslaw, Gravitational Physics of Stellar and Galactic Systems (Cambridge University Press, Cambridge, 1985), p. 217; J. Binney and S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, 1987), p. 267; D. Pavon, Gen. Rel. and Gravit. 19, 375 (1987); H. E. Kandrup, Phys. Rev. A 40, 7265 (1989); H. S. Robertson, Statistical Thermophysics (Prentice Hall, Englewood Cli.s, New Jersey, 1993), p. 96.

    Article  MathSciNet  ADS  Google Scholar 

  17. B. J. Hiley and G. S. Joice, Proc. Phys. Soc. 85, 493 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  18. G. Kotliar, P. W. Anderson, and D. L. Stein, Phys. Rev. B 27, 602 (1983); see also K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986), p. 924. [The system which is analyzed is a d = 1 Ising spin-glass whose random coupling constants follow a centered Gaussian distribution and decay with distance as 1/rá. It can be seen that the size scaling is still given by ~ N = N + 1, to be introduced later on, but with á replaced by 2á; in other words, the system is extensive if and only if 2α > d.]

    Article  MathSciNet  ADS  Google Scholar 

  19. H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984), p. 9.

    MATH  Google Scholar 

  20. M. O. Caceres, in Nonextensive Statistical Mechanics and Thermodynamics, eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 124 (1999) [accessible at http://sbf.if.usp.br/WWWpages/Journals/BJP/Vol29/Num1/index.htm].

  21. X.-P. Huang and C. F. Driscoll, Phys. Rev. Lett. 72, 2187 (1994).

    Article  ADS  Google Scholar 

  22. E. M. Montroll and B. J. West, in Fluctuation Phenomena, eds. E. W. Montroll and J. L. Lebowitz (North-Holland, Amsterdam, 1979) [2nd edition: North-Holland Personal Library (1987)]; E. Montroll and M. F. Shlesinger, J. Stat. Phys. 32, 209 (1983); Lévy Flights and Related Topics in Physics, eds. M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch (Springer-Verlag, Berlin, 1995); P. Allegrini, P. Grigolini, and B. J. West, Phys. Rev. E 54, 4760 (1996); B. J. West and P. Grigolini, Phys. Rev. E 55, 99 (1997); P. Grigolini, A. Rocco, and B. J. West, Phys. Rev. E 59, 2603 (1999); B. J. West, Physiology, Promiscuity and Prophecy at the Millenium: A Tale of Tails (World Scientific, Singapore, 1999).

    Google Scholar 

  23. Y.-H. Taguchi and H. Takayasu, Europhys. Lett. 30, 499 (1995).

    Article  ADS  Google Scholar 

  24. K. T. Waldeer and H. M. Urbassek, Physica A 176, 325 (1991).

    Article  ADS  Google Scholar 

  25. I. Koponen, Phys. Rev. E 55, 7759 (1997).

    Article  ADS  Google Scholar 

  26. D. C. Clayton, Nature 249, 131 (1974).

    Article  ADS  Google Scholar 

  27. N. A. Bahcall and S. P. Oh, Astrophys. J. 462, L49 (1996).

    Article  ADS  Google Scholar 

  28. J. M. Liu, J. S. De Groot, J. P. Matte, T. W. Johnston, and R. P. Drake, Phys. Rev. Lett. 72, 2717 (1994).

    Article  ADS  Google Scholar 

  29. J. Maddox, Nature 365, 103 (1993).

    Article  ADS  Google Scholar 

  30. H. P. de Oliveira, S. L. Sautu, I. D. Soares, and E. V. Tonini, Phys. Rev. D 60, 121301 (1999).

    Article  ADS  Google Scholar 

  31. G. Wilk and Z. Wlodarcsyk, Nucl. Phys. B (Proc. Suppl.) 75A, 191 (1999); G. Wilk and Z. Wlodarcsyk, Phys. Rev. D 50, 2318 (1994); G. Wilk and Z. Wlodarcsyk, Phys. Rev. Lett. 84, 2770 (2000); M.L.D. Ion and D.B. Ion, Phys. Lett. B 482, 57 (2000).

    Article  ADS  Google Scholar 

  32. I. Bediaga, E. M. F. Curado, and J. Miranda, Physica A 286, 156 (2000); C. Beck, Physica A 286, 164 (2000).

    Article  ADS  Google Scholar 

  33. O. V. Utyuzh, G. Wilk, and Z. Wlodarcsyk, preprint (1999) [hep-ph/9906442].

    Google Scholar 

  34. O. V. Utyuzh, G. Wilk, and Z. Wlodarcsyk, preprint (1999) [hep-ph/9906500].

    Google Scholar 

  35. T. Alber et al., Eur. Phys. J. C 2, 643 (1998).

    Article  ADS  Google Scholar 

  36. D. B. Walton and J. Rafelski, Phys. Rev. Lett. 84, 31 (2000).

    Article  ADS  Google Scholar 

  37. S. Abe and A. K. Rajagopal, Phys. Rev. A 60, 3461 (1999); A. Vidiella-Barranco, Phys. Lett. A 260, 335 (1999).

    Article  ADS  Google Scholar 

  38. E. M. F. Curado and C. Tsallis, J. Phys. A 24, L69 (1991); (Corrigenda) 24, 3187 (1991) and 25, 1019 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  39. C. Tsallis, R. S. Mendes, and A. R. Plastino, Physica A 261, 534 (1998).

    Article  Google Scholar 

  40. A. R. Plastino and A. Plastino, Phys. Lett. A 177, 177 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  41. J. L. Lebowitz, Physica A 194, 1 (1993); Physics Today 46, 32 (1993); Physica A 263, 516 (1999), and references therein.

    Article  MathSciNet  ADS  Google Scholar 

  42. J. Harvda and F. Charvat, Kybernetica 3, 30 (1967).

    Google Scholar 

  43. I. Vajda, Kybernetika 4, 105 (1968) [in Czech].

    MathSciNet  MATH  Google Scholar 

  44. Z. Daroczy, Inf. and Control 16, 36 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  45. A. Wehrl, Rev. Mod. Phys. 50, 221 (1978); I. J. Taneja, Advances in Electronics and Electron Physics 76, 327 (1989); M. Behara, Additive and Nonadditive Measures of Entropy (Wiley Eastern, New Delhi, 1990); M. Basseville, Institut de Recherche en Informatique et Systemes Aleatoires-IRISA (France), Report 1020 (May 1996).

    Article  MathSciNet  ADS  Google Scholar 

  46. C. Tsallis, Chaos, Solitons and Fractals 6, 539 (1995).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. C. Anteneodo and A. R. Plastino, J. Phys. A 32, 1089 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. A. R. R. Papa, J. Phys. A 31, 5271 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. E. P. Borges and I. Roditi, Phys. Lett. A 246, 399 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. P. T. Landsberg and V. Vedral, Phys. Lett. A 247, 211 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. P. T. Landsberg, in Nonextensive Statistical Mechanics and Thermodynamics, eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 46 (1999) [accessible at http://sbf.if.usp.br/WWWpages/Journals/BJP/Vol29/Num1/index.htm].

  52. E. M. F. Curado, in Nonextensive Statistical Mechanics and Thermodynamics, eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 36 (1999) [accessible at http://sbf.if.usp.br/WWWpages/Journals/BJP/Vol29/Num1/index.htm].

  53. R. P. Di Sisto, S. Martinez, A. R. Plastino, and A. Plastino, Physica A 265, 590 (1999).

    Article  Google Scholar 

  54. R. S. Johal, Phys. Rev. E 58, 4147 (1998).

    Article  ADS  Google Scholar 

  55. A. K. Rajagopal and S. Abe, Phys. Rev. Lett. 83, 1711 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. R. S. Johal and R. Rai, Physica A 282, 525 (2000).

    Article  ADS  Google Scholar 

  57. R. Rossignoli and N. Canosa, Phys. Lett. A 264, 148 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  58. A. Renyi, in Proc. Fourth Berkeley Symposium, 1960, Vol. 1 (University of California Press, Berkeley, Los Angeles, 1961), 547; Probability Theory (North-Holland, 1970) and references therein.

    Google Scholar 

  59. I. Csiszar, Information measures: A critical survey, in Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and the European Meeting of Statisticians, 1974 (Reidel, Dordrecht, 1978), p. 73.

    Google Scholar 

  60. M. P. Schutzenberger, Contribution aux applications statistiques de la theorie de l’information, Publ. Inst. Statist. Univ. Paris 3, 3 (1954).

    MathSciNet  Google Scholar 

  61. M. Hotta and I. Joichi, Phys. Lett. A 262, 302 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  62. R. J. V. dos Santos, J. Math. Phys. 38, 4104 (1997); see also S. Abe, Phys. Lett. A 271, 74 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  63. S. Abe, Phys. Lett. A 224, 326 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  64. F. Jackson, Mess. Math. 38, 57 (1909); Quart. J. Pure Appl. Math. 41, 193 (1910).

    Google Scholar 

  65. C. Tsallis, Quimica Nova 17, 468 (1994).

    Google Scholar 

  66. E. P. Borges, J. Phys. A 31, 5281 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  67. P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 (1983) and Phys. Rev. A 28, 2591 (1983); T. A. Halsey et al., Phys. Rev. A 33, 1141 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  68. S. Watanabe, Knowing and Guessing (Wiley, New York, 1969).

    MATH  Google Scholar 

  69. H. Barlow, Vision. Res. 30, 1561 (1990); see also G. Toulouse, J. Phys. I (France) 3, 229 (1993).

    Article  Google Scholar 

  70. A. Plastino and A. R. Plastino, in Nonextensive Statistical Mechanics and Thermodynamics, eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 50 (1999) [accessible at http://sbf.if.usp.br/WWWpages/Journals/BJP/Vol29/Num1/index.htm].

  71. L. R. da Silva, E. K. Lenzi, J. S. Andrade, and J. Mendes Filho, Physica A 275, 396 (2000).

    Article  Google Scholar 

  72. S. Abe, Phys. Lett. A 263, 424 (1999); (Erratum) 267, 456 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  73. A. R. Lima and T. J. P. Penna, Phys. Lett. A 256, 221 (1999).

    Article  Google Scholar 

  74. F. D. Nobre and C. Tsallis, Physica A 213, 337 (1995) [Erratum: 216, 369 (1995)]; F. D. Nobre and C. Tsallis, Phil. Mag. B 73, 545 (1996).

    Article  MathSciNet  Google Scholar 

  75. C. Beck and F. Schlögl, Thermodynamics of Chaotic Systems (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  76. C. Tsallis and S. Abe, Physics Today 51, 114 (October, 1998).

    Google Scholar 

  77. M. C. S. Vieira and C. Tsallis, J. Stat. Phys. 48, 97 (1987).

    Article  ADS  Google Scholar 

  78. G. R. Guerbero. and G. A. Raggio, J. Math. Phys. 37, 1776 (1996); G. R. Guerberoff, P. A. Pury, and G. A. Raggio, J. Math. Phys. 37, 1790 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  79. A. Chame, Physica A 255, 423 (1998).

    Article  Google Scholar 

  80. S. Abe, Physica A 269, 403 (1999).

    Google Scholar 

  81. R. F. S. Andrade, Physica A 203, 486 (1994).

    Article  Google Scholar 

  82. A. K. Rajagopal, in the present volume.

    Google Scholar 

  83. K. Sasaki and M. Hotta, preprint (1999) [cond-mat/9912454].

    Google Scholar 

  84. V. Latora, A. Rapisarda, and S. Ruffo, Phys. Rev. Lett. 83, 2104 (1999).

    Article  ADS  Google Scholar 

  85. D. Prato and C. Tsallis, Phys. Rev. E 60, 2398 (1999).

    ADS  Google Scholar 

  86. A. M. Mariz, Phys. Lett. A 165, 409 (1992); J. D. Ramshaw Phys. Lett. A 175, 169 and 171 (1993).

    Article  MathSciNet  Google Scholar 

  87. L. Borland, A. R. Plastino, and C. Tsallis, J. Math. Phys. 39, 6490 (1998); (Erratum) 40, 2196 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  88. M. O. Caceres, Phys. Lett. A 218, 471 (1995); A. Chame and E. V. L. de Mello, Phys. Lett. A 228, 159 (1997).

    MathSciNet  Google Scholar 

  89. A. K. Rajagopal, Phys. Rev. Lett. 76, 3469 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  90. E. K. Lenzi, L. C. Malacarne, and R. S. Mendes, Phys. Rev. Lett. 80, 218 (1998).

    Article  ADS  Google Scholar 

  91. C. Tsallis, Phys. Lett. A 206, 389 (1995).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  92. A. R. Plastino, A. Plastino, and C. Tsallis, J. Phys. A 27, 5707 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  93. T. Yamano, Phys. Lett. A 264, 276 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  94. C. Tsallis, A. R. Plastino, and W.-M. Zheng, Chaos, Solitons and Fractals 8, 885 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  95. E. P. da Silva, C. Tsallis, and E. M. F. Curado, Physica A 199, 137 (1993); (Erratum) 203, 160 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  96. C. Tsallis, in New Trends in Magnetism, Magnetic Materials and Their Applications, eds. J. L. Moran-Lopez and J. M. Sanchez (Plenum Press, New York, 1994); A. Chame and E. V. L. de Mello, J. Phys. A 27, 3663 (1994).

    Google Scholar 

  97. B. M. Boghosian, in Nonextensive Statistical Mechanics and Thermodynamics, eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 90 (1999) [accessible at http://sbf.if.usp.br/WWWpages/Journals/BJP/Vol29/Num1/index.htm].

  98. A. R. Plastino and A. Plastino, Phys. Lett. A 174, 384 (1993); J. J. Aly, Minimum energy / maximum entropy states ofself-gravitating systems, in N-body problems and gravitational dynamics, oceedings of the Meeting held at Aussois-France (21–25 March 1993), eds. F. Combes and E. Athanassoula (Publications de l’Observatoire de Paris, Paris, 1993), page 19; A. R. Plastino and A. Plastino, Phys. Lett. A 193, 251 (1994); A. R. Plastino and A. Plastino, in Nonextensive Statistical Mechanics and Thermodynamics, eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 1 (1999) [accessible at http://sbf.if.usp.br/WWWpages/Journals/BJP/Vol29/Num1/index.htm].

    Google Scholar 

  99. B. M. Boghosian, Phys. Rev. E 53, 4754 (1996).

    Article  ADS  Google Scholar 

  100. D. A. Stariolo, Phys. Lett. A 185, 262 (1994); L. Borland, Phys. Lett. A 245, 67 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  101. A. R. Plastino and A. Plastino, Phys. Lett. A 222, 347 (1995).

    MathSciNet  Google Scholar 

  102. C. Tsallis and D. J. Bukman, Phys. Rev. E 54, R2197 (1996).

    Article  ADS  Google Scholar 

  103. A. Compte and D. Jou, J. Phys. A 29, 4321 (1996); D. A. Stariolo, Phys. Rev. E 55, 4806 (1997); L. Borland, Phys. Rev. E 57, 6634 (1998); L. Borland, Phys. Lett. A 245, 67 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  104. A. K. Rajagopal, Physica A 253, 271 (1998).

    Article  MathSciNet  Google Scholar 

  105. H. S. Wio and S. Bouzat, in Nonextensive Statistical Mechanics and Thermodynamics, eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 135 (1999) [accessible at http://sbf.if.usp.br/WWWpages/Journals/BJP/Vol29/Num1/index.htm].

  106. C. Tsallis, Phys. Rev. E 58, 1442 (1998).

    Article  ADS  Google Scholar 

  107. A. K. Rajagopal and C. Tsallis, Phys. Lett. A 257, 283 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  108. E. K. Lenzi, L. C. Malacarne, and R. S. Mendes, Phys. Rev. Lett. 80, 218 (1998).

    Article  ADS  Google Scholar 

  109. A. K. Rajagopal, R. S. Mendes and E. K. Lenzi, Phys. Rev. Lett. 80, 3907 (1998); E. K. Lenzi, R. S. Mendes and A. K. Rajagopal, Phys. Rev. E 59, 1398 (1999); R. S. Mendes, Braz. J. Phys. 29, 66 (1999).

    Article  ADS  Google Scholar 

  110. R. A. Treumann, Phys. Rev. E 57, 5150 (1998); E. K. Lenzi, L. C. Malacarne, and R. S. Mendes, preprint (1998); J. E. Straub and T. Whitfield, preprint (1998).

    Article  ADS  Google Scholar 

  111. A. K. Rajagopal, in Nonextensive Statistical Mechanics and Thermodynamics, eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 61 (1999) [accessible at http://sbf.if.usp.br/WWWpages/Journals/BJP/Vol29/Num1/index.htm].

  112. A. R. Plastino and C. Anteneodo, Ann. Phys. 255, 250 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  113. C. Tsallis and D. A. Stariolo, Notas de Fisica/CBPF (Brazil) 026 (June 1994) and Physica A 233, 395 (1996); D.A. Stariolo and C. Tsallis, Ann. Rev. Comput. Phys., Vol. II, ed. D. Stauffer (World Scientific, Singapore, 1995)), page 343.

    Google Scholar 

  114. T. J. P. Penna, Phys. Rev. E 51, R1 (1995).

    Article  ADS  Google Scholar 

  115. I. Andricioaei and J. E. Straub, Pys. Rev. E 53, R3055 (1996); Physica A 247, 553 (1997); J. E. Straub and I. Andricioaei, in Nonextensive Statistical Mechanics and Thermodynamics, eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 179 (1999) [accessible at http://sbf.if.usp.br/WWWpages/Journals/BJP/Vol29/Num1/index.htm].

    Article  ADS  Google Scholar 

  116. J. Schulte, Phys. Rev. E 53, 1348 (1996).

    Article  ADS  Google Scholar 

  117. U. H. E. Hansmann, Physica A 242, 250 (1997); Chem. Phys. Lett. 281, 140 (1997); U. H. E. Hansmann and Y. Okamoto, Phys. Rev. E 56, 2228 (1997); U. H. E. Hansmann, M. Masuya, and Y. Okamoto, Proc. Natl. Acad. Sci. USA 94, 10652 (1997); U. H. E. Hansmann, F. Eisenmenger, and Y. Okamoto, Chem. Phys. Lett. 297, 374 (1998); U. H. E. Hansmann and Y. Okamoto, in Nonextensive Statistical Mechanics and Thermodynamics, eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 187 (1999) [accessible at http://sbf.if.usp.br/WWWpages/Journals/BJP/Vol29/Num1/index.htm].

    Article  ADS  Google Scholar 

  118. P. Serra, A. F. Stanton, S. Kais, and R. E. Bleil, J. Chem. Phys. 106, 7170 (1997); P. Serra and S. Kais, Chem. Phys. Lett. 275, 211 (1997).

    Article  ADS  Google Scholar 

  119. Y. Xiang, D. Y. Sun, W. Fan, and X. G. Gong, Phys. Lett. A 233, 216 (1997).

    Article  ADS  Google Scholar 

  120. M. R. Lemes, C. R. Zacharias, and A. Dal Pino Jr., Phys. Rev. B 56, 9279 (1997).

    Article  ADS  Google Scholar 

  121. D. E. Ellis, K. Mundim, V. P. Dravid, and J. W. Rylander, Hybrid classical and quantum modeling of defects, interfaces and surfaces, in Computer Aided-Design ofHigh-T emperature Materials (Oxford University Press, Oxford, 1999), page 350; M. A. Moret, P. M. Bisch, and F. M. C. Vieira, Phys. Rev. E 57, R2535 (1998); K. C. Mundim, T. Lemaire, and A. Bassrei, Physica A 252, 405 (1998); M. A. Moret, P. G. Pascutti, P. M. Bisch, and K. C. Mundim, J. Comput. Chem. 19, 647 (1998); L. Guo, D. E. Ellis, and K. C. Mundim, J. Porphyrins and Phthalocyanines 3, 196 (1999); K. C. Mundim and D. E. Ellis, in Nonextensive Statistical Mechanics and Thermodynamics, eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 197 (1999) [accessible at http://sbf.if.usp.br/WWWpages/Journals/BJP/Vol29/Num1/index.htm].

    Google Scholar 

  122. K. C. Mundim and C. Tsallis, Int. J. Quantum Chem. 58, 373 (1996).

    Article  Google Scholar 

  123. H. Nishimori and J. Inoue, J. Phys. A 31, 5661 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  124. R. Salazar and R. Toral, Phys. Rev. Lett. 83, 4233 (1999); Computer Physics Communications 121/122, 40 (1999); A Monte Carlo method for the numerical simulation of Tsallis statistics, preprint (1999) [cond-mat/9911063]; A. R. Lima, J. S. Sa Martins, and T. J. P. Penna, Physica A 268, 553 (1999).

    Article  ADS  Google Scholar 

  125. A. R. Plastino, H. G. Miller, A. Plastino, and G. D. Yen, J. Math. Phys. 38, 6675 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  126. S. Abe and A. K. Rajagopal, Physica A (2001), in press.

    Google Scholar 

  127. A. K. Rajagopal, Phys. Lett. A 205, 32 (1995).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  128. M. Portesi and A. Plastino, Physica A 225, 412 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  129. D. B. Ion and M. L. D. Ion, Phys. Rev. Lett. 81, 5714 (1998); Phys. Rev. Lett. 83, 463 (1999); Phys. Rev. E 60, 5261 (1999).

    Article  ADS  Google Scholar 

  130. F. Buyukkilic and D. Demirhan, Phys. Lett. A 181, 24 (1993); F. Buyukkilic, D. Demirhan, and A. Gulec, Phys. Lett. A 197, 209 (1995); F. Pennini, A. Plastino, and A.R. Plastino, Phys. Lett. A 208, 309 (1995); F. Pennini, A.R. Plastino, and A. Plastino, Physica A 235, 388 (1997); U. Tirnakli, F. Buyukkilic, and D. Demirhan, Phys. Lett. A 245, 62 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  131. A. K. Rajagopal, Physica B 212, 309 (1995).

    Article  ADS  Google Scholar 

  132. A. K. Rajagopal, Phys. Lett. A 214, 127 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  133. E. K. Lenzi, R. S. Mendes, and A. K. Rajagopal, Physica A 286, 503 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  134. A. Ott, J. P. Bouchaud, D. Langevin, and W. Urbach, Phys. Rev. Lett. 65, 2201 (1990); J. P. Bouchaud, A. Ott, D. Langevin, and W. Urbach, J. Phys. II (France) 1, 1465 (1991).

    Article  ADS  Google Scholar 

  135. F. Bardou, J. P. Bouchaud, O. Emile, A. Aspect, and C. Cohen-Tannoudji, Phys. Rev. Lett. 72, 203 (1994).

    Article  ADS  Google Scholar 

  136. T. H. Solomon, E. R. Weeks, and H. L. Swinney, Phys. Rev. Lett. 71, 3975 (1993).

    Article  ADS  Google Scholar 

  137. G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J. Murphy, P. A. Prince, and H. E. Stanley, Nature 381, 413 (1996).

    Article  ADS  Google Scholar 

  138. C.-K. Peng, J. Mietus, J. M. Hausdorff, S. Havlin, H. E. Stanley, and A. L. Goldberger, Phys. Rev. Lett. 70, 1343 (1993).

    Article  ADS  Google Scholar 

  139. R. A. Antonia, N. Phan-Thien, and B. R. Satyoparakash, Phys. Fluids 24, 554 (1981).

    Article  ADS  Google Scholar 

  140. C.-K. Peng, S. V. Buldyrev, A. L. Goldberger, S. Havlin, F. Scirotino, M. Simons, and H. E. Stanley, Nature 356, 168 (1992); H. E. Stanley, S. V. Buldyrev, A. L. Goldberger, S. Havlin, R. N. Mantegna, C.-K. Peng, M. Simons, and M. H. R. Stanley, in Lévy Flights and Related Topics, eds. M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch (Springer, Berlin, 1995), p. 331.

    Article  ADS  Google Scholar 

  141. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1983).

    Google Scholar 

  142. B. B. Mandelbrot, Fractals and Scaling in Finance: Discontinuity, Concentration, Risk (Springer-Verlag, New York, 1997), and references therein.

    MATH  Google Scholar 

  143. R. N. Mantegna, and H. E. Stanley, Nature 376, 46 (1995).

    Article  ADS  Google Scholar 

  144. P. A. Alemany and D. H. Zanette, Phys. Rev E 49, R956 (1994).

    Article  ADS  Google Scholar 

  145. D. H. Zanette and P. A. Alemany, Phys. Rev. Lett. 75, 366 (1995); 77, 2590 (1996); M. O. Caceres and C. E. Budde, Phys. Rev. Lett. 77, 2589 (1996); D. H. Zanette, Braz. J. Phys. 29, 107 (1999) [accessible at http://sbf.if.usp.br/WWWpages/Journals/BJP/Vol29/Num1/index.htm]; A. Robledo, Phys. Rev. Lett. 83, 2289 (1999).

    Article  ADS  Google Scholar 

  146. C. Tsallis, S. V. F. Levy, A. M. C. de Souza, and R. Maynard, Phys. Rev. Lett. 77, 5422 (1996) [Erratum 77, 5442 (1996)]; C. Tsallis, Physics World 10, 42 (July 1997).

    Article  ADS  Google Scholar 

  147. V. V. Uchaikin and V. M. Zolotarev, Chance and Stability—Stable Distributions and Their Applications, Series Modern Probability and Statistics (VSP, The Netherlands, 1999).

    Google Scholar 

  148. E. W. Montroll and B. J. West, in Studies in Statistical Mechanics, Vol. VII, eds. E. W. Montroll and J. L. Lebowitz (North-Holland, Amsterdam, 1979), p. 62.

    Google Scholar 

  149. A. S. Chaves, Phys. Lett. A 239, 13 (1998); M. P. Almeida, Phys. Lett. A 249, 560 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  150. G. Drazer, H. S. Wio and C. Tsallis, Phys. Rev. E 61, 1417 (2000).

    Article  ADS  Google Scholar 

  151. A. R. Plastino, M. Casas, and A. Plastino, Physica A (2000), in press.

    Google Scholar 

  152. P. Quarati, A. Carbone, G. Gervino, G. Kaniadakis, A. Lavagno, and E. Miraldi, Nucl. Phys. A 621, 345c (1997); G. Kaniadakis, A. Lavagno, M. Lissia, and P. Quarati, Physica A 261, 359 (1998); M. Coraddu, G. Kaniadakis, A. Lavagno, M. Lissia, G. Mezzorani, and P. Quarati, in Nonextensive Statistical Mechanics and Thermodynamics, eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 153 (1999) [accessible at http://sbf.if.usp.br/WWWpages/Journals/BJP/Vol29/Num1/index.htm].

    Article  ADS  Google Scholar 

  153. V. H. Hamity and D. E. Barraco, Phys. Rev. Lett. 76, 4664 (1996); D. F. Torres, H. Vucetich, and A. Plastino, Phys. Rev. Lett. 79, 1588 (1997).

    Article  ADS  Google Scholar 

  154. G. K. Zipf, Human Behavior and the Principle of Least Effort (Addison-Wesley, Cambridge-MA, 1949); see also R. Gunther, L. Levitin, B. Schapiro, and P. Wagner, Intern. J. Theor. Phys. 35, 395 (1996).

    Google Scholar 

  155. S. Denisov, Phys. Lett. A 235, 447 (1997).

    Article  ADS  Google Scholar 

  156. D. Kahneman and A. Tversky, Econometrica 47, 263 (1979); A. Tverky and D. Kahneman, Journal of Risk and Uncertainty 5, 297 (1992).

    Article  MATH  Google Scholar 

  157. C. Tsallis, Chaos, Solitons and Fractals 6, 539 (1995).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  158. C. Tsallis, A. S. Martinez and R. Maynard, unpublished.

    Google Scholar 

  159. C. Tsallis, Physica A 221, 277 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  160. X.-P. Huang, F. Anderegg, E. M. Hollmann, C. F. Driscoll, and T. M. O’Neil, Phys. Rev. Lett. 78, 875 (1997); F. Anderegg, X.-P. Huang, C. F. Driscoll, E. M. Hollmann, T. M. O’Neil, and D. H. E. Dubin, Phys. Rev. Lett. 78, 2128 (1997).

    Article  ADS  Google Scholar 

  161. C. Anteneodo and C. Tsallis, J. Mol. Liq. 71, 255 (1997).

    Article  Google Scholar 

  162. C. Anteneodo, private communication. This theory was first presented in [3].

    Google Scholar 

  163. H. Brands, P. H. Chavanis, R. Pasmanter, and J. Sommeria, Phys. Fluids 11, 3465 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  164. V. Berezinsky, Solar Neutrino Problem, 30eme Rencontre de Moriond (12–18 March, 1995) [Laboratori Nazionali del Gran Sasso, Report 14 (June 1995)].

    Google Scholar 

  165. G. Kaniadakis, A. Lavagno, and P. Quarati, Phys. Lett. B 369, 308 (1996).

    Article  ADS  Google Scholar 

  166. A. Lavagno, G. Kaniadakis, M. Rego-Monteiro, P. Quarati, and C. Tsallis, Astrophys. Lett. and Comm. 35, 449 (1998).

    ADS  Google Scholar 

  167. C. Tsallis and A. M. C. de Souza, Phys. Lett. A 235, 444 (1997).

    Article  ADS  Google Scholar 

  168. J. C. Mather et al., Astrophys. J. 420, 439 (1994); D.J. Fixsen et al., Astrophys. J. 420, 457 (1994).

    Article  ADS  Google Scholar 

  169. C. Tsallis, F. C. Sa Barreto, and E. D. Loh, Phys. Rev. E 52, 1447 (1995).

    Article  ADS  Google Scholar 

  170. A. R. Plastino, A. Plastino, and H. Vucetich, Phys. Lett. A 207, 42 (1995).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  171. A. Einstein, in Physics and Reality. [In his words: “To be sure, it has been pointed out that the introduction of a spacetime continuum may be considered as contrary to nature in view of the molecular structure of everything which happens on a small scale. It is maintained that perhaps the success of the Heisenberg method points to a purely algebraical method of description of nature, that is to the elimination of continuum functions from physics. Then, however, we must also give up, by principle, the spacetime continuum.”]; in The Meaning of Relativity. [In his words: “One can give good reasons why reality cannot at all be represented by a continuous field. From the quantum phenomena it appears to follow with certainty that a finite system of finite energy can be completely described by a finite set of numbers (quantum numbers). This does not seem to be in accordance with a continuum theory, and must lead to an attempt to find a purely algebraic theory for the description of reality. But nobody knows how to obtain the basis of such a theory.”]

    Google Scholar 

  172. R. Hagedorn, Suppl. Nuovo Cimento 3, 147 (1965).

    Google Scholar 

  173. W. M. Alberico, A. Lavagno, and P. Quarati, Eur. Phys. J. C 12, 499 (1999).

    Article  ADS  Google Scholar 

  174. C. M. G. Lattes, Y. Fujimoto, and S. Hasegawa, Phys. Rep. 65, 151 (1980).

    Article  ADS  Google Scholar 

  175. R. H. Austin, K. Beeson, L. Eisenstein, H. Frauenfelder, I. C. Gunsalus, and V. P. Marshall, Phys. Rev. Lett. 32, 403 (1974); R. H. Austin, K. Beeson, L. Eisenstein, and H. Frauenfelder, Biochemistry 14, 5355 (1975); F. Parak and H. Frauenfelder, Physica A 201, 332 (1993); H. Frauenflder and P. G. Wolynes, Physics Today 58 (February 1994); P. G. Wolynes, J. N. Onuchic, and D.Thirumalai, Science 267, 1169 (1995).

    Article  ADS  Google Scholar 

  176. C. Tsallis, G. Bemski, and R. S. Mendes, Phys. Lett. A 257, 93 (1999); Erratum: see caption of Fig. 15.

    Article  ADS  Google Scholar 

  177. A. Upadhyaya, J. P. Rieu, J. A. Glazier, and Y. Sawada (1998), private communication.

    Google Scholar 

  178. S. Redner, Eur. Phys. J. B 4, 131 (1998).

    Article  ADS  Google Scholar 

  179. C. Tsallis and M. P. de Albuquerque, Eur. Phys. J. B 13, 777 (2000).

    Article  ADS  Google Scholar 

  180. L. G. Gamero, A. Plastino, and M. E. Torres, Physica A 246, 487 (1998); A. Capurro, L. Diambra, D. Lorenzo, O. Macadar, M. T. Martin, C. Mostaccio, A. Plastino, J. Perez, J. Perez, E. Rofman, M. E. Torres, and J. Velluti, Physica A 257, 149 (1998); A. Capurro, L. Diambra, D. Lorenzo, O. Macadar, M. T. Martin, C. Mostaccio, A. Plastino, J. Perez, E. Rofman, M. E. Torres, and J. Velluti, Physica A 265, 235 (1999); M. T. Martin, A. R. Plastino, and A. Plastino, Physica A 275, 262 (2000).

    Article  ADS  Google Scholar 

  181. A. C. Tsallis, C. Tsallis, A. C. N. de Magalhaes, and F.A. Tamarit, to be published.

    Google Scholar 

  182. S. A. Cannas, D. A. Stariolo, and F. A. Tamarit, Network: Computation in neural sciences 7, 141 (1996).

    Article  MATH  Google Scholar 

  183. S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, and Y. Dodge, Nature 381, 767 (1996).

    Article  ADS  Google Scholar 

  184. F. M. Ramos, C. Rodrigues Neto, and R. R. Rosa, preprint (1999) [condmat/9907348].

    Google Scholar 

  185. B. Chabaud, A. Naert, J. Peinke, F. Chilla, B. Castaing, and B. Hebral, Phys. Rev. Lett. 73, 3227 (1994).

    Article  ADS  Google Scholar 

  186. T. Arimitsu and N. Arimitsu, Phys. Rev. E 61, 3237 (2000).

    Article  ADS  Google Scholar 

  187. F. Anselmet, Y. Cagne, E. J. Hopfinger, and R. A. Antonia, J. Fluid Mech. 140, 63 (1984); C. Meneveau and K. R. Sreenivasan, Nucl. Phys. B (Proc. Suppl.) 2, 49 (1987).

    Article  ADS  Google Scholar 

  188. C. Beck, Physica A 277, 115 (2000).

    Article  ADS  Google Scholar 

  189. B. Castaing, Y. Gagne, and E. J. Hopfinger, Physica D 46, 177 (1990).

    Article  MATH  ADS  Google Scholar 

  190. T. Arimitsu and N. Arimitsu, J. Phys. A 33, L 235 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  191. C. Meneveau and K. R. Sreenivasan, J. Fluid Mech. 224, 429 (1991).

    Article  MATH  ADS  Google Scholar 

  192. C. Tsallis, Fractals 3, 541 (1995).

    Article  MATH  Google Scholar 

  193. P. Jund and S. G. Kim, Phys. Rev. B 52, 50 (1995); J. R. Grigera, Phys. Lett. A 217, 47 (1996); S. A. Cannas and F. A. Tamarit, Phys. Rev. B 54, R12661 (1996); S. A. Cannas and A. C. N. Magalhaes, J. Phys. A 30, 3345 (1997); L. C. Sampaio, M. P. de Albuquerque, and F. S. de Menezes, Phys. Rev. B 55, 5611 (1997); S. E. Curilef, Ph.D. thesis (CBPF, Rio de Janeiro, 1997); S. Curilef and C. Tsallis, Phys. Lett. A 264, 270 (1999); H. H. A. Rego, L. S. Lucena, L. R. da Silva, and C. Tsallis, Physica A 266, 30 (1999); F. Tamarit and C. Anteneodo, Phys. Rev. Lett. 84, 208 (2000).

    Article  ADS  Google Scholar 

  194. H. N. Nazareno and P. E. de Brito, Phys. Rev. B 60, 4629 (1999).

    Article  ADS  Google Scholar 

  195. L. Borland and J. G. Menchero, Braz. J. Phys. 29, 169 (1999); L. Borland, J. G. Menchero, and C. Tsallis, Phys. Rev. B 61, 1650 (2000).

    Article  Google Scholar 

  196. I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993).

    Article  ADS  Google Scholar 

  197. U. M. S. Costa, M. L. Lyra, A. R. Plastino, and C. Tsallis, Phys. Rev. E 56, 245 (1997).

    Article  ADS  Google Scholar 

  198. M. L. Lyra and C. Tsallis, Phys. Rev. Lett. 80, 53 (1998); U. Tirnakli, C. Tsallis, and M. L. Lyra, Eur. Phys. J. B 10, 309 (1999); C. R. da Silva, H. R. da Cruz, and M. L. Lyra, in Nonextensive Statistical Mechanics and Thermodynamics, eds. S. R. A. Salinas and C. Tsallis, Braz. J. Phys. 29, 144 (1999) [accessible at http://sbf.if.usp.br/WWWpages/Journals/BJP/Vol29/Num1/index.htm].

    Article  ADS  Google Scholar 

  199. P. Grassberger and M. Scheunert, J. Stat. Phys. 26, 697 (1981); T. Schneider, A. Politi, and D. Wurtz, Z. Phys. B 66, 469 (1987); G. Anania and A. Politi, Europhys. Lett. 7, 119 (1988) [It can be shown that from its Eq. (2) can be derived the present Eq. (156)]; H. Hata, T. Horita, and H. Mori, Progr. Theor. Phys. 82, 897 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  200. V. Latora and M. Baranger, Phys. Rev. Lett. 82, 520 (1999).

    Article  ADS  Google Scholar 

  201. R. C. Hilborn, Chaos and Nonlinear Dynamics (Oxford University Press, New York, 1994), page 390.

    MATH  Google Scholar 

  202. G. Guerbero., private communication (1998).

    Google Scholar 

  203. V. Latora, M. Baranger, A. Rapisarda, and C. Tsallis, Phys. Lett. A 273, 97 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  204. S. Montangero, L. Fronzoni, and P. Grigolini, preprint (1999) [cond-mat/9911412].

    Google Scholar 

  205. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  206. F. A. Tamarit, S. A. Cannas, and C. Tsallis, Eur. Phys. J. B 1, 545 (1998); A. R. R. Papa and C. Tsallis, Phys. Rev. E 57, 3923 (1998); see also A. Bhowal, Physica A 247, 327 (1997).

    Article  ADS  Google Scholar 

  207. V. Latora, A. Rapisarda, and S. Ruffo, Phys. Rev. Lett. 80, 692 (1998).

    Article  ADS  Google Scholar 

  208. C. Anteneodo and C. Tsallis, Phys. Rev. Lett. 80, 5313 (1998).

    Article  ADS  Google Scholar 

  209. L. Borland and C. Tsallis, in preparation (1999).

    Google Scholar 

  210. E. P. Borges and C. Tsallis, in preparation (1999).

    Google Scholar 

  211. A. Campa, A. Giansanti, D. Moroni, and C. Tsallis, cond-mat/0002168

    Google Scholar 

  212. M.-C. Firpo, Phys. Rev. E 57, 6599 (1998).

    Article  ADS  Google Scholar 

  213. M. Antoni and A. Torcini, Phys. Rev. E 57, R6233 (1998).

    Article  ADS  Google Scholar 

  214. M. Buiatti, P. Grigolini, and L. Palatella, Physica A 268, 214 (1999).

    Article  Google Scholar 

  215. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Science 220, 671 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  216. A. M. C. de Souza and C. Tsallis, Physica A 236, 52 (1997).

    Article  ADS  Google Scholar 

  217. S. Lloyd, Phys. Rev. A 61, R010301 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  218. P. Gaspard and X.-J. Wang, Proc. Natl. Acad. Sci. USA 85, 4591 (1988); P. A. Alemany, Phys. Lett. A 235, 452 (1997); C. Tsallis, L. R. da Silva, R. S. Mendes, R. O. Vallejos, and A. M. Mariz, Phys. Rev. E 56, R4922 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  219. A. Wiles, Annals of Mathematics 142, 443 (1995); R. Taylor and A. Wiles, Annals of Mathematics 142, 553 (1995).

    Article  MathSciNet  Google Scholar 

  220. R. S. Mendes and C. Tsallis, Renormalization group approach to nonextensive statistical mechanics, preprint (2000) [cond-mat/0003365].

    Google Scholar 

  221. E. K. Lenzi, E. P. Borges, and R. S. Mendes, J. Phys. A 32, 8551 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsallis, C. (2001). I. Nonextensive Statistical Mechanics and Thermodynamics: Historical Background and Present Status. In: Abe, S., Okamoto, Y. (eds) Nonextensive Statistical Mechanics and Its Applications. Lecture Notes in Physics, vol 560. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40919-X_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-40919-X_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41208-3

  • Online ISBN: 978-3-540-40919-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics