An Approach for Heterogeneous Video Multicast Using Active Networking

  • Héctor Akamine
  • Naoki Wakamiya
  • Masayuki Murata
  • Hideo Miyahara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1942)


We present a framework for heterogeneous video multicasting, considering an active network in which active nodes can filter the video stream to satisfy different quality requests. As a part of this approach, we propose a heuristic algorithm for the construction of a multicast distribution tree that appropriately chooses the active nodes at which filtering is performed with the aim of, for example, minimizing the total required bandwidth. We evaluate the performance of our algorithm and compare it against two other approaches: simulcast and layered encoded transmission. Through simulation experiments, we show that a larger number of simultaneous multicast sessions can be set up with active filtering.


heterogeneous multicast active networking video filtering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McCanne, S., Jacobson, V., Vetterli, M.: Receiver-driven Layered Multicast. Proc. ACM Sigcomm (1996) 117–130 157Google Scholar
  2. 2.
    Yeadon, N., García, F., Hutchinson, D., Shepherd, D.: Filters: QoS Support Mechanisms for Multipeer Communications. IEEE Journal on Selected Areas in Communications, Vol. 14, No. 7 (1996) 1245–1262 157, 160CrossRefGoogle Scholar
  3. 3.
    Pasquale, J., Polyzos, G., Anderson, E., Kompella, V.: Filter Propagation in Dissemination Trees: Trading Off Bandwidth and Processing in Continuous Media Networks. Proc. NOSSDAV (1993) 157Google Scholar
  4. 4.
    Metzler, B., Harbaum, T., Wittmann, R., Zitterbart, M.: AMnet: Heterogeneous Multicast Services based on Active Networking. Proc. IEEE OpenArch (1999) 98–105 157, 160Google Scholar
  5. 5.
    Calvert, K. (ed.): Architectural Framework for Active Networks, Version 1.0. Active Network Working Group Draft (1999) 158Google Scholar
  6. 6.
    Alexander, S., Arbaugh, W., Hicks, M., Kakkar, P., Keromytis, A., Moore, J., Gunter, C., Nettles, S., Smith, J.: The Switchware Active Network Architecture. IEEE Network, Vol. 12 No. 3 (1998) 27–36 159Google Scholar
  7. 7.
    Wetherall D.: Service Introduction in an Active Network. Ph.D. Thesis, Massachusetts Institute of Technology (1999) 159Google Scholar
  8. 8.
    Tanenbaum, A.: Computer Networks. 3rd. edn. Prentice Hall (1996) 159Google Scholar
  9. 9.
    Handley, M.: SAP: Session Announcement Protocol. Internet Draft, Work in Progress (1996) 161Google Scholar
  10. 10.
    Fukuda, K., Wakamiya, N., Murata, M., Miyahara, H.: On Flow Aggregation for Multicast Video Transport. Proc. Sixth IFIP International Workshop on Quality of Service (1998) 13–22 161Google Scholar
  11. 11.
    Semeria, C., Maufer, T.: Introduction to IP Multicast Routing. 3COM White Paper, available at 162
  12. 12.
    Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A Transport Protocol for Real-Time Applications. Request for Comments 1889 (1996) 163Google Scholar
  13. 13.
    Fukuda, K., Wakamiya, N., Murata, M., Miyahara, H.: Real-Time Video Distribution with Hybrid Hierarchical Video Coding in Heterogeneous Network and Client Environments. Proc. MMNS (1998) 165Google Scholar
  14. 15.
    Waxman, B.: Routing of Multipoint Connections. IEEE Journal on Selected Areas in Communications, Vol. 6, No. 9 (1988) 1617–1622 166CrossRefGoogle Scholar
  15. 16.
    Zegura, E., Calvert, K., Bhattacharjee, S.: How to Model an Internetwork. Proc. IEEE Infocom (1996) 166Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Héctor Akamine
    • 1
  • Naoki Wakamiya
    • 1
  • Masayuki Murata
    • 1
  • Hideo Miyahara
    • 1
  1. 1.Department of Informatics and Mathematical Science Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan

Personalised recommendations