Chinese Cursive Script Character Image Retrieval Based on an Integrated Probability Function

  • Irwin King
  • Zhong Jin
  • David Yuk-Ming Chan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1929)


Often in content-based image retrieval, a single image at- tribute may not have enough discriminative information for retrieval. On the other hand, when multiple features are used, it is hard to determine the suitable weighting factors for various features for optimal retrieval. In this paper, we present an idea of integrated probability function and use it to combine features for Chinese cursive script character image retrieval. A database of 1400 monochromatic images is used. Experimental results show that the proposed system based on Legendre moment feature, Zernike moment feature, and pseudo Zernike moment feature is robust to retrieval deformed images. Using our integrated probability function, ninety-nine percent of the targets are ranked at the top 2 positions.


Image Retrieval Combination Scheme Zernike Moment Image Retrieval System Large Scale Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and W. Equitz. Efficient and effective querying by image content. Journal of Intelligent Information Systems, 3(3/4):231–262, July 1994.CrossRefGoogle Scholar
  2. 2.
    C. P. Lam, J. K. Wu, and B. Mehtre. STAR-A System for trademark archival and retrieval. In 2nd Asian Conf. on Computer Vision, volume 3, pages 214–217, 1995.Google Scholar
  3. 3.
    Y. S. Kim and W. Y. Kim. Content-based trademark retrieval system using visually salient feature. In IEEE Computer Society Cnf. on Computer Vision and Pattern Recognition, pages 307–312, 1997.Google Scholar
  4. 4.
    A. K. Jain and A. Vailaya. Shape-based retrieval: A case study with trademark image databases. Pattern Recognition, 31(9):1369–1390, 1998.CrossRefGoogle Scholar
  5. 5.
    J. P. Eakins, J. M. Boardman, and M. E. Graham. Similarity retrieval of trademark images. IEEE Multimedia, 5(2):53–63, 1998.CrossRefGoogle Scholar
  6. 6.
    D. Y. M. Chan and I. King. Genetic algorithm for weights assignment in dissimilarity function for trademark retrieval. In Third International Conf. on Visual Information and Information Systems(VISUAL’99), volume 1614 of Lecture Notes in Computer Science, pages 557–565, The Netherlands, 1999. Springer.Google Scholar
  7. 7.
    K.C. Ma. Shu Pu I Chu / Ma Kuo-Chuan I Chu. Hong Kong: Shao-Hua Wen Hua Fu Wu She, 1977.Google Scholar
  8. 8.
    J. Cao, M. Ahmadi, and M. Shridhar. Recognition of handwritten numerals with multiple feature and multistage classifier, Pattern Recognition, 28(2): 153–160, 1995.CrossRefGoogle Scholar
  9. 9.
    J. Kittler, R. Hatef, R. P. W. Dubin, and J. Matas. On combining classifiers. IEEE Transaction on Pattern Analysis and Machine Intelligence, 20(3):226–239, 1997.CrossRefGoogle Scholar
  10. 10.
    D. Y. M. Chan and I. King. Weight assignment in dissimilarity function for Chinese script character image retrieval using genetic algorithm.Google Scholar
  11. 11.
    J. Ashley, R. Barber, M. Flickner, J. Hafner, D. Lee, W. Niblack, and D. Petkovic. Automatic and semiautomatic methods for image annotation and retrieval in QBIC. In Proceedings of Storage and Retrieval for Image and Video Database III, volume 2420, pages 24–35, February 1995.Google Scholar
  12. 12.
    J. K. Wu, B. M. Mehtre, Y. J. Gao, Chian-Prong Lam, and A. Desai Narasimhalu. STAR-A multimedia database system for trademark registration. In Witold Litwin and Tore Risch, editors, Applications of Databases, First International Conf., volume 819 of Lecture Notes in Computer Science, pages 109–122, Vadstena, Sweden, 21–23 June 1994. Springer.Google Scholar
  13. 13.
    A. Soffer and H. Samet. Using negative shape features for logo similarity matching. In 14th International Conf. on Pattern Recognition, volume 1, pages 571–573, 1998.Google Scholar
  14. 14.
    F. Mokhtarian, S. Abbasi, and J. Kittler. Efficient and robust retrieval by shape content through curvature scale space. In First International Workshop on Image Databases and Multi-Media Search, pages 35–42, Amesterdam, The Ntherlands, August 1996.Google Scholar
  15. 15.
    M. K. Hu. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 8, 1962.Google Scholar
  16. 16.
    B. Jahne. Digital Image Processing: Concepts, Algorithms and Scientific Applications. Springer-Verlag, Berlin; New York, 4 edition, 1997.Google Scholar
  17. 17.
    J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.CrossRefGoogle Scholar
  18. 18.
    A. K. Jain and A. Vailaya. Image retrieval using color and shape. Pattern Recognition, 29(8): 1233–1244, 1996.CrossRefGoogle Scholar
  19. 19.
    S. X. Liao and M. Pawlak. On image analysis by moments. IEEE Transaction on Pattern Analysis and Machine Intelligence, 18(3): 254–266, 1996.CrossRefGoogle Scholar
  20. 20.
    Cho-Huak Teh and R. T Chin. On image analysis by the methods of moments. IEEE Transaction on Pattern Analysis and Machine Intelligence, 10(4): 496–513, 1988.zbMATHCrossRefGoogle Scholar
  21. 21.
    R. R. Bailey and M. Srinath. Orthogonal moment features for use with parametric and non-parametric classifiers. IEEE Transaction on Pattern Analysis and Machine Intelligence, 18(4): 389–398, 1996.CrossRefGoogle Scholar
  22. 22.
    H. H. Lu. Han Tai Chien Tu Tsao Tzu Pien. Shang-hai: Shang-hai Shu Hua Chu Pan She, 1989, 1 edition.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Irwin King
    • 1
  • Zhong Jin
    • 2
  • David Yuk-Ming Chan
    • 1
  1. 1.Department of Computer Science and EngineeringThe Chinese University of Hong KongShatinHong Kong
  2. 2.Department of Computer ScienceNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations