Shape Similarity Measures, Properties and Constructions

  • Remco C. Veltkamp
  • Michiel Hagedoorn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1929)


This paper formulates properties of similarity measures. We list a number of similarity measures, some of which are not well known (such as the Monge-Kantorovich metric), or newly introduced (re ection metric), and give a set constructions that have been used in the design of some similarity measures.


Image Retrieval Triangle Inequality Pattern Match Subdivision Scheme Dissimilarity Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Alt, B. Behrends, and J. Blömer. Approximate matching of polygonal shapes. Annals of Mathematics and Artificial Intelligence, pages 251–265, 1995.Google Scholar
  2. 2.
    H. Alt, U. Fuchs, G. Rote, and G. Weber. Matching convex shapes with respect to the symmetric difference. In Proc. ESA, pages 320–333. LNCS 1136, Springer, 1996.Google Scholar
  3. 3.
    H. Alt and M. Godeau. Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications, pages 75–91, 1995.Google Scholar
  4. 4.
    E. Arkin, P. Chew, D. Huttenlocher, K. Kedem, and J. Mitchel. An effciently computable metric for comparing polygonal shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3):209–215, 1991.CrossRefGoogle Scholar
  5. 6.
    A. J. Baddeley. An error metric for binary images. In Robust Computer Vision: Quality of Vision Algorithms, Proc. of the Int. Workshop on Robust Computer Vision, Bonn, 1992, pages 59–78. WichmannGoogle Scholar
  6. 7.
    L. P. Chew, M. T. Goodrich, D. P. Huttenlocher, K. Kedem, J. M. Kleinberg, and D. Kravets. Geometric pattern matching under Euclidean motion. Computational Geometry, Theory and Applications, 7:113–124, 1997.zbMATHMathSciNetGoogle Scholar
  7. 8.
    P. Chew and K. Kedem. Improvements on approximate pattern matching. In 3rd Scandinav. Workshop Algorithm Theory, LNCS 621, pages 318–325. Springer, 1992.Google Scholar
  8. 9.
    S. D. Cohen and L. J. Guibas. Partial matching of planar polylines under similarity transformations. In Proc. SODA, pages 777–786, 1997.Google Scholar
  9. 10.
    G. Cortelazzo, G. A. Mian, G. Vezzi, and P. Zamperoni. Trademark shapes description by string-matching techniques. Pattern Recognition, 27:1005–1018, 1994.CrossRefGoogle Scholar
  10. 11.
    A. Efrat and A. Itai. Improvements on bottleneck matching and related problems using geometry. Proc. SoCG, pages 301–310, 1996.Google Scholar
  11. 12.
    R. Fagin and L. Stockmeyer. Relaxing the triangle inequality in pattern matching. Int. Journal of Computer Vision, 28(3):219–231, 1998.CrossRefGoogle Scholar
  12. 13.
    R. Fleischer, K. Mehlhorn, G. Rote, E. Welzl, and C. Yap. Simultaneous inner and outer approximation of shapes. Algorithmica, 8:365–389, 1992.CrossRefMathSciNetzbMATHGoogle Scholar
  13. 14.
    D. Fry. Shape Recognition using Metrics on the Space of Shapes. PhD thesis, Harvard University, Department of Mathematics, 1993.Google Scholar
  14. 15.
    M. Hagedoorn and R. C. Veltkamp. Metric pattern spaces. Technical Report UU-CS-1999-03, Utrecht University, 1999.Google Scholar
  15. 16.
    M. Hagedoorn and R. C. Veltkamp. Reliable and efficient pattern matching using an affine invariant metric. Int. Journal of Computer Vision, 31(2/3):203–225, 1999.CrossRefGoogle Scholar
  16. 17.
    D. P. Huttenlocher, K. Kedem, and J. M. Kleinberg. On dynamic Voronoi diagrams and the minimum Hausdorff distance for point sets under EuWWW.clidean motion in the plane. In Proc. SoCG, pages 110–120, 1992.Google Scholar
  17. 18.
    D. P. Huttenlocher, K. Kedem, and M. Sharir. The upper envelope of Voronoi surfaces and its applications. Discrete and Comp. Geometry, 9:267–291, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 19.
    D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. Comparing images using the hausdorff distance. IEEE Transactions on Pattern Analysis and Machinen Intelligence, 15:850–863, 1993.CrossRefGoogle Scholar
  19. 20.
    Plato. Meno. Perseus Encyclopedia, Tuft University, http://www.perseus.tufts. edu/Texts/chunk_TOC.grk.html#Plato, 380 B.C.
  20. 22.
    S. Rachev. The Monge-Kantorovich mass transference problem and its stochastical applications. Theory of Probability and Applications, 29:647–676, 1985.zbMATHCrossRefGoogle Scholar
  21. 23.
    Y. Rubner, C. Tomassi, and L Guibas. A metric for distributions with applications to image databases. In Proc. of the IEEE Int. Conf. on Comp. Vision, Bombay, India, pages 59–66, 1998.Google Scholar
  22. 24.
    W. Rucklidge. Efficient Visual Recognition Using the Hausdorff Distance. LNCS. Springer, 1996.zbMATHGoogle Scholar
  23. 25.
    S. Schirra. Approximate decision algorithms for approximate congruence. Information Processing Letters, 43:29–34, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 26.
    L. Schomaker, E. de Leau, and L. Vuurpijl. Using pen-based outlines for object-based annotation and image-based queries. In Visual Information and Information Systems, LNCS 1614, pages 585–592. Springer, 1999.Google Scholar
  25. 27.
    A. Tversky. Features of similarity. Psychological Review, 84(4):327–352, 1977.CrossRefGoogle Scholar
  26. 28.
    J. Vleugels and R. C. Veltkamp. Efficient image retrieval through vantage objects. In Visual Information and Information Systems, LNCS 1614, pages 575–584. Springer, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Remco C. Veltkamp
    • 1
  • Michiel Hagedoorn
    • 1
  1. 1.Department of Computing ScienceUtrecht UniversityThe Netherlands

Personalised recommendations