Advertisement

An Iconic and Semantic Content Based Retrieval System for Histological Images

  • Ringo W. K. Lam
  • Kent K. T. Cheung
  • Horace H. S. Ip
  • Lilian H. Y. Tang
  • R. Hanka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1929)

Abstract

This paper describes an intelligent image retrieval system based on iconic and semantic content of histological images. The system first divides an image into a set of subimages. Then the iconic features are derived from primitive features of color histogram, texture and second order statistics of the subimages. These features are then passed to a high level semantic reasoning engine, which generates hypotheses and requests a number of specific fine feature detectors for verification. After iterating a certain number of cycles, a final histological label map is decided for the submitted image. The system may then retrieve images based on either iconic or semantic content. Annotation is also generated for each image processed.

Keywords

Image Retrieval Query Image Color Histogram Histological Image CBIR System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. W. Chu, C. C. Hsu, A. F. Cardenas and R. K. Taira, “Knowledge-Based Image Retrieval with Spatial and Temporal Constructs”, IEEE Transactions on Knowledge & Data Eng., vol. 10, no.6, pp. 872–888, 1998.CrossRefGoogle Scholar
  2. [2]
    E. G. M. Petrakis and C. Faloutsos, “Similarity Searching in Medical Image Databases”, IEEE Transactions on Knowledge & Data Eng., vol. 9, no.3, pp.435–447, 1997.CrossRefGoogle Scholar
  3. [3]
    P. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel and Z. Protopapas, “Fast Effective Retrieval of Medical Tumor Shapes”, IEEE Transactions on Knowledge and Data Engineering, vol. 10, no.6, pp.889–904, 1998.CrossRefGoogle Scholar
  4. [4]
    T. Y. Hou, P. Liu, A. Hsu and M. Y. Chiu, “Medical Image Retrieval by Spatial Features”, IEEE Inter. Conf. Systems, Man and Cybernetics, vol.2, pp.1364–1369, 1992.Google Scholar
  5. [5]
    P. W. Hamilton, P. H. Bartels, D. Thompson, N. H. Anderson, R. Montironi and J. M. Sloan, “Automated Location of Dysplastic Fields in Colorectal histology Using Image Texture Analysis”, Journal of Pathology, vol. 182, pp. 68–75, 1997CrossRefGoogle Scholar
  6. [6]
    C. R. Shyu, C. E. Brodley, A. C. Kak, A. Kosaka, A. Aisen and L. Broderick, “Local versus Global Features for Content-Based Image Retrieval”, Proc. of IEEE Workshop Content Based Access of Image and Video Libraries, pp. 30–34, 1998.Google Scholar
  7. [7]
    A. K. Jain and F. Farrokhnia, “Unsupervised Texture Segmentation Using Gabor Filters”, Pattern Recognition, vol.24, no.12, pp. 1167–1186, 1991.CrossRefGoogle Scholar
  8. [8]
    A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall: Englewood Cliffs, 1989.zbMATHGoogle Scholar
  9. [9]
    L. H. Y. Tang, R. Hanka, R. Lam, H. H. S. Ip, “Automatic Semantic Labelling of Medical Images for Content-Based Retrieval”, Proceedings of Expersys’98, pp. 77–82, USA, 1998.Google Scholar
  10. [10]
    L. H. Y. Tang, R. Hanka, H. H. S. Ip, R.. Lam,“Extraction of Semantic Features of Histological Images for Content-Based Retrieval of Images”, Proceedings of SPIE Medical Imaging’ 99, vol. 3662, pp. 360–368, USA, 1999.CrossRefGoogle Scholar
  11. [11]
    L. H. Y. Tang, R. Hanka, H. H. S. Ip, “A Review of Intelligent Content-Based Indexing and Browsing of Medical Images”, Health Informatics Journal, vol. 5, no.1, pp. 40–49, March 1999.Google Scholar
  12. [12]
    K. K. T. Chueng, R. W. K. Lam, H. H. S. Ip, L. H. Y. Tang and R. Hanka, “Software Framework for Combining Iconic and Semantic Content for Intelligent Retrieval of Histological Images”, published in Visual’2000.Google Scholar
  13. [13]
    R. W. K. Lam, H. H. S. Ip, K. K. T. Cheung, L. H. Y. Tang and R. Hanka, “A Multi-Window Approach To Classify Histological Features”, published in ICPR’2000.Google Scholar
  14. [14]
    A. Wetzel and M. J. Becich, “Content Based Image Retrieval and pathology Image Classification Image Processing,” http://www.psc.edu/research/abstracts/becich.html, 1998.

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Ringo W. K. Lam
    • 1
  • Kent K. T. Cheung
    • 1
  • Horace H. S. Ip
    • 1
  • Lilian H. Y. Tang
    • 2
  • R. Hanka
    • 2
  1. 1.Image Computing Group, Computer ScienceCity University of Hong KongHK
  2. 2.Medical Informatics Unit, Medical SchoolUniversity of CambridgeUK

Personalised recommendations