An Integrated Multimedia System with Learning Capabilities

  • G. Ciocca
  • I. Gagliardi
  • R. Schettini
  • B. Zonta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1929)


This paper describes the main features of the multimedia information retrieval engine of Quicklook2. Quicklook2 allows the user to query image and multimedia databases with the aid of sample images, or a user-made sketch and/or textual descriptions, and progressively refine the system’s response by indicating the relevance, or nonrelevance of the retrieved items. The performance of the system is illustrated with examples from various application domains.


Image Retrieval Relevance Feedback Relevant Image Learn Capability Textual Annotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aigrain O., Zhang H., Petkovic D.: Content-Based Representation and Retrieval of Visual Media: A State-of-the-Art Review. Multimedia Tools and Applications, 3 (1996) 179–182.CrossRefGoogle Scholar
  2. 2.
    Amadasun M., King R.: Textural features corresponding to textural properties, IEEE Transaction on System, Man and Cybernetics, 19 (1989) 1264–1274.CrossRefGoogle Scholar
  3. 3.
    Bach J.R., C. Fuller, A Gupta, A. Humpapur, H. Horowitz, R. Jain, C. Shu, The Virage image search engine: an opne framework for image management. Proc. SPIE Storage and Retrieval for Still Image and Video Database IV, S. Jose, 1996.Google Scholar
  4. 4.
    Berman A.P., Shapiro L.G., A flexible image database system for content-based retrieval. Computer Vision and Image Understanding, Vol. 75, Nos. 1/2, July/August, (1999) 175–195.CrossRefGoogle Scholar
  5. 5.
    Carrara P., Della Ventura A., Gagliardi I., “Designing hypermedia information retrieval systems for multimedia art catalogues”, The New Review of Hypermedia and Multimedia, vol. 2, pp. 175–195, 1996.CrossRefGoogle Scholar
  6. 6.
    Cinque L., Levialdi S., and Pellicano’ A., Color-Based Image Retrieval Using Spatial-Chromatic Histograms, IEEE Multimedia Systems 99, IEEE Computer Society, Vol. II, (1999) 969–973CrossRefGoogle Scholar
  7. 7.
    Ciocca G., Gagliardi I., Schettini R Content-based color image retrieval with relevance feedback, Proc. International Conference on Image Processing, Kobe (Japan), Special session “Image Processing Based on Color Science”, (1999).Google Scholar
  8. 8.
    Ciocca G., Gagliardi I., Schettini R., Quicklook: a content-based image retrieval system with learning capabilities, IEEE Multimedia Systems 99, IEEE Computer Society, Vol. II, (1999) 1028–1029.CrossRefGoogle Scholar
  9. 9.
    Ciocca G., Gagliardi I., Schettini R.: Retrieving color images by content. In: Del Bimbo A., Schettini R. (eds.) Proc. of the Image and Video Content-Based Retrieval Workshop (1998)Google Scholar
  10. 10.
    Ciocca G., R. Schettini, A relevance feedback mechanism for content-based imageretrieval, Information Processing and Management, 35 (1999) 605–632.CrossRefGoogle Scholar
  11. 11.
    Ciocca G., Schettini R., Content-based similarity retrieval of trademarks using relevance feedback, Pattern Recognition, 2000 (in print)Google Scholar
  12. 12.
    Ciocca G., Gagliardi I., Schettini R, Interactive Visual Information Retrieval, 2000 IEEE International Symposium on Circuits and Systems, 28–31 may 2000(Special Session on Digital Photography).Google Scholar
  13. 13.
    Cox I.J., M.L. Miller, S.O. Omohundro, P.N. Yianilos, PicHunter: Bayesian Relevance Feedback for Image Retrieval. Proc. ICPR’96, pp. 361–369, (1996)Google Scholar
  14. 14.
    Faloutsos C., Barber R., Flickner M., Hafner J., Niblack W., Petrovic D. Efficient and effective querying by image content, Journal of Intelligent Systems, 3 (1994) 231–262.CrossRefGoogle Scholar
  15. 15.
    Gagliardi I., Schettini R.: A method for the automatic indexing of color images for effective image retrieval. The New Review of Hypermedia and Multimedia, 3 (1997), 201–224.CrossRefGoogle Scholar
  16. 16.
    Gudivada V.N, Rahavan V.V.: Modeling and retrieving images by content. Information Processing and Management, 33 (1997) 427–452.CrossRefGoogle Scholar
  17. 17.
    Harmandas V., Mark Sanderson, Mark D. Dunlop: Image Retrieval by Hypertext Links. SIGIR 1997: 296–303Google Scholar
  18. 18.
    Hu M., Visual pattern recognition by moment invariants, IRE Trans. Inf. Theory 8, 179–187, (1962).Google Scholar
  19. 20.
    La Cascia M., S. Sethi, and S. SclaroffCombining Textual and Visual Cues for Contentbased Image Retrieval on the World Wide Web Proc. IEEE Workshop on Content-Based Access of Image and Video Libraries, June, 1998Google Scholar
  20. 22.
    Ma W.Y, B.S. Manjunath, Netra: a toolbox for navigating large image databases, Proc. EEE International Conference on Image Processing, 1996.Google Scholar
  21. 23.
    Y. Miyake, H. Saitoh, H. Yaguchi, and N. Tsukada. Facial pattern detection and color orrection from television picture for newspaper printing. Journal of Imaging Technology, 6:165–169, 1990.Google Scholar
  22. 24.
    Minka T., Picard R.W., Interactive learning with a “Society of Models”. Pattern ecognition, Vol. 30(4), pp. 565–581, 1997.CrossRefGoogle Scholar
  23. 25.
    Mood A.M, Graybill F.A., & Boes D.C: Introduzione alla statistica. McGraw-Hill (1988)Google Scholar
  24. 26.
    Mukherjea S., J. Cho, Automatically determining semantics for Word Wide Web ultimedia information Retrieval, Journal of Visual Languages and Computing, Vol. 10, p. 585–606, 1999.CrossRefGoogle Scholar
  25. 27.
    Pass G., Zabih R., Miller J.: Comparing Images Using Color Coherence Vectors. Proc. ourth ACM Multimedia 96 Conference (1996).Google Scholar
  26. 28.
    Rousseeuw P.J., Leroy A.M.: Robust regression and outlier detection, John Wiley & Sons (1987).Google Scholar
  27. 29.
    Rui Y., T.S. Huang, M. Ortega, S. Mehrotra, Relevance feedback: a power tool in interactive content-based retrieval, IEEE Transaction on Circuits and Systems for Video Technologies, Special Issue on Interactive Multimedia Systems for the Internet, Vol. 8(5), pp. 644–655, 1998.CrossRefGoogle Scholar
  28. 30.
    Rui Y., T.S. Huang, Image retrieval: current technologies, promising directions, and open issues, Journal of Visual Communication and Image Representation, Vol. 10, pp. 39–62 (1999).CrossRefGoogle Scholar
  29. 31.
    Salton G., A. Singhal, M. Mitra, C. Buckley, “Automatic text structuring and summarization”, Information Processing & Management, Vol. 33(2), pp. 193–207, 1997, Elsevier Science Ltd.CrossRefGoogle Scholar
  30. 32.
    Salton G., Automatic text processing, Addison-Wesley, 1989, New York.Google Scholar
  31. 34.
    Stricker M., Orengo6M.: Similarity of Color Images. Proc. of the SPIE Storage and Retrieval for Image and Video Databases III Conference (1995).Google Scholar
  32. 35.
    Tamura H., S. Mori and T. Yamawaki, “Textural features corresponding to visual perception”, IEEE Transaction on System, Man and Cybernetics 8, pp.460–473, 1978.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • G. Ciocca
    • 1
  • I. Gagliardi
    • 1
  • R. Schettini
    • 1
  • B. Zonta
    • 1
  1. 1.Istituto Tecnologie Informatiche MultimedialiConsiglio Nazionale delle RicercheMilanoItaly

Personalised recommendations