Advertisement

MRML: A Communication Protocol for Content-Based Image Retrieval

  • Wolfgang Müller
  • Henning Müller
  • Stéphane Marchand-Maillet
  • Thierry Pun
  • David McG. Squire
  • Zoran Pečenović
  • Christoph Giess
  • Arjen P. de Vries
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1929)

Abstract

In this paper we introduce and describe the Multimedia Retrieval Markup Language (MRML). This XML-based markup language is the basis for an open communication protocol for content-based image retrieval systems (CBIRSs). MRML was initially designed as a means of separating CBIR engines from their user interfaces. It is, however, also extensible as the basis for standardised performance evaluation procedures. Such a tool is essential for the formulation and implementation of common benchmarks for CBIR. A common protocol can also bring new dynamics to the CBIR field — it makes the development of new systems faster and more efficient, and opens the door of the CBIR research field to other disciplines such as Human-Computer Interaction. The MRML specifications, as well as the first MRML-compliant applications, are freely available and are introduced in this paper. Keywords: Multimedia retrieval, Communication protocol, Evaluation framework, Reusable software components

Keywords

Communication Protocol Relevance Judgement Text Retrieval Query Engine Multimedia Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.
    QBICTM-IBM’s Query By Image Content. http://wwwqbic.almaden.ibm.com/~qbic/ (1998)
  2. 3.
    Chang, Y.-C., Bergmann, L., Smith, J. R., Li, C.-S.: Query taxonomy ofmultimedia databases. In: Panchanathan et al. [21]. (SPIE Symposium on Voice, Video and Data Communications)Google Scholar
  3. 4.
    Li, J. Z., zsu, M., Szafron, D., Oria, V.: Moql: A multimedia object query language. In: The Third International Workshop on Multimedia Information Systems. Como, Italy (September 1997)Google Scholar
  4. 5.
    de Vries, A.: Mirror: Multimedia query processing in extensible databases. In: Proceedings of the fourteenth Twente workshop on language technology (TWLT14): Language Technology in Multimedia Information Retrieval. Enschede, The Netherlands (December 1998)Google Scholar
  5. 6.
    Revet, B.: DICOM Cook Book for Implementations in Madalities. Philips Medical Systems, Eindhoven, Netherlands (1997)Google Scholar
  6. 7.
    Vorhees, E. M., Harmann, D.: Overview of the seventh text retrieval conference (TREC-7). In: The Seventh Text Retrieval Conference. Gaithersburg, MD, USA (November 1998)Google Scholar
  7. 8.
    Müller, H., Müller, W., Squire, D. M., Pun, T.: Performance evaluation in content-based image retrieval: Overview and proposals. Tech. Rep. 99.05, Computer Vision Group, Computing Centre, University of Geneva, rue Gnral Dufour, 24, CH-1211 Genve, Switzerland (dec 1999)Google Scholar
  8. 9.
    Annotated groundtruth database. Department of Com-puter Science and Engineering, University of Washington, http://www.cs.washington.edu/research/imagedatabase/groundtruth/(1999)
  9. 10.
    de Vries, A., van Doorn, M., Blanken, H., Apers, P.: The Mirror MMDBMS architecture. In: Proceedings of 25th International Conference on Very Large Databases (VLDB’ 99). Edinburgh, Scotland, UK (September 1999). Technical demoGoogle Scholar
  10. 11.
    Müller, H., Squire, D. M., Müller, W., Pun, T.: Efficient access methods for content-based image retrieval with inverted files. In: Panchanathan et al. [21]. (SPIE Symposium on Voice, Video and Data Communications)Google Scholar
  11. 12.
    Squire, D. M., Müller, W., Müller, H., Raki, J.: Content-based query of image databases, inspirations from text retrieval: inverted files, frequency-based weights and relevance feedback. In: The 11th Scandinavian Conference on Image Analysis (SCIA’99). Kangerlussuaq, Greenland (June 7-11 1999)Google Scholar
  12. 13.
    Pečenović, Z.: Image retrieval using Latent Semantic indexing. Final year graduate thesis, AudioVisual Communications Lab, Ecole Polytechnique Fédérale de Lausanne, Switzerland (June 1997)Google Scholar
  13. 14.
    Müller, W., Pečenović, Z., de Vries, A. P., Squire, D. M., Müller, H., Pun, T.: MRML: Towards an extensible standard for multimedia querying and benchmark-ing-Draft proposal. Tech. Rep. 99.04, Computer Vision Group, Computing Cen-tre, University of Geneva, rue Général Dufour, 24, CH-1211 Genéve, Switzerland (October 1999)Google Scholar
  14. 15.
    Beigi, M., Benitez, A. B., Chang, S.-F.: Metaseek: A content-based meta-search engine for images. In: Symposium on Electronic Imaging: Multimedia Processing and Applications-Storage and Retrieval for Image and Video Databases VI, IST/SPIE’98, San Jose, CA (1998)Google Scholar
  15. 16.
    Picard, R. W.: Aéctive Computing. MIT Press, Cambridge (1997)Google Scholar
  16. 17.
    Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. Tech. Rep. 87-881, Department of Computer Science, Cornell University, Ithaca, New York 14853-7501 (November 1987)Google Scholar
  17. 18.
    Müller, W., Squire, D. M., Müller, H., Pun, T.: Hunting moving targets: an exten-sion to Bayesian methods in multimedia databases. In: Panchanathan et al. [21]. (SPIE Symposium on Voice, Video and Data Communications)Google Scholar
  18. 19.
    Lee, C. S., Ma, W.-Y., Zhang, H.: Information Embedding Based on User’s Relevance Feedback for Image Retrieval. In: Panchanathan et al. [21]. (SPIE Sympo-sium on Voice, Video and Data Communications)Google Scholar
  19. 20.
    Squire, D. M., Müller, W., Müller, H.: Relevance feedback and term weighting schemes for content-based image retrieval. In: Huijsmans, D. P., Smeulders, A. W. M., eds., Third International Conference On Visual Information Systems (VI-SUAL’99), no. 1614 in Lecture Notes in Computer Science. Springer-Verlag, Amsterdam, The Netherlands (June 2–4 1999)Google Scholar
  20. 21.
    Panchanathan, S., Chang, S.-F., Kuo, C.-C. J., eds.: Multimedia Storage and Archiving Systems IV (VV02), vol. 3846 of SPIE Proceedings, Boston, Mas-sachusetts, USA (September 20–22 1999). (SPIE Symposium on Voice, Video and Data Communications)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Wolfgang Müller
    • 1
  • Henning Müller
    • 1
  • Stéphane Marchand-Maillet
    • 1
  • Thierry Pun
    • 1
  • David McG. Squire
    • 2
  • Zoran Pečenović
    • 3
  • Christoph Giess
    • 4
  • Arjen P. de Vries
    • 5
  1. 1.Computer Vision Group Computer Science DepartmentUniversity of GenevaGenevaSwitzerland
  2. 2.Computer Science and Software EngineeringMonash UniversityMelbourneAustralia
  3. 3.LCAV and Ergonomics GroupEcole Polytechnique Fédérale de LausanneSwitzerland
  4. 4.Medical and Biological InformaticsDeutsches KrebsforschungszentrumHeidelbergGermany
  5. 5.CWIAmsterdamThe Netherlands

Personalised recommendations