Skip to main content

A Planning Map for Mobile Robots: Speed Control and Paths Finding in a Changing Environment

  • Conference paper
  • First Online:
Advances in Robot Learning (EWLR 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1812))

Included in the following conference series:

Abstract

We present here a neural model for mobile robot action selection and trajectories planning. It is based on the elaboration of a “cognitive map”. This cognitive map builds up a graph linking together reachable places. We first demonstrate that this map may be used for the control of the robot speed assuring a convergence to the goal. We show afterwards that this model enables to select between different goals in a static environment and finally in a changing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amari, 1977. Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27:77–87.

    Article  MATH  MathSciNet  Google Scholar 

  • Arbib and Lieblich, 1977. Arbib, M. and Lieblich, I. (1977). Motivational learning of spatial behavior. In Metzler, J., editor, Systems Neuroscience, pages 221–239. Academic Press.

    Google Scholar 

  • Bachelder and Waxman, 1994. Bachelder, I. and Waxman, A. (1994). Mobile robot visual mapping and localization: A view-based neurocomputational architecture that emulates hippocampal place learning. Neural Networks, 7(6/7):1083–1099.

    Article  Google Scholar 

  • Baloch and Waxman, 1991. Baloch, A. and Waxman, A. (1991). Visual learning, adaptive expectations and behavioral conditionning of the mobile robot mavin. Neural Networks, 4:271–302.

    Article  Google Scholar 

  • Bellman, 1958. Bellman, R. (1958). On a routing problem. Quarterly of Applied Mathematics, 16:87–90.

    MATH  MathSciNet  Google Scholar 

  • Bicho and Schöner, 1997. Bicho, E. and Schöner, G. (1997). The dynamics approach to autonomous robotics demonstrated on a low-level vehicle platform. Robotics and Autonomous System, 21:23–35.

    Article  Google Scholar 

  • Bugmann, 1997. Bugmann, G. (1997). Basic Concepts in Neural Networks: A survey, chapter Chap 5: A Connectionist Approach to Spatial Memory and Planning. Perspectives in Neural Networks. Springer.

    Google Scholar 

  • Bugmann et al., 1995. Bugmann, G., Taylor, J., and Denham, M. (1995). Route finding by neural nets. In Taylor, J., editor, Neural Networks, pages 217–230, Henleyon-Thames. Alfred Waller Ltd.

    Google Scholar 

  • Burgess et al., 1994. Burgess, N., Recce, M., and O’Keefe, J. (1994). A model of hippocampal function. Neural Networks, 7(6/7):1065–1081.

    Article  MATH  Google Scholar 

  • Connolly et al., 1990. Connolly, C., Burns, J., and Weiss, R. (1990). Path planning using laplace’s equation. In International Conference on Robotics and Automation, pages 2102–2106.

    Google Scholar 

  • Franz et al., 1998. Franz, M., Schölkopf, B., Mallot, H., and Bülthoff, H. (1998). Learning view graphs for robot navigation. Autonomous Robots, 5:111–125.

    Article  Google Scholar 

  • Gaussier et al., 2000. Gaussier, P., Joulain, C., Banquet, J., Leprêtre, S., and Revel, A. (2000). The visual homing problem: an example of robotics/biology cross fertilization. Robotics and Autonomous Systems, 30:155–180.

    Article  Google Scholar 

  • Gaussier et al., 1997a. Gaussier, P., Joulain, C., Zrehen, S., Banquet, J., and Revel, A. (1997a). Visual navigation in an open environment without map. In International Conference on Intelligent Robots and Systems-IROS’97, pages 545–550, Grenoble, France. IEEE/RSJ.

    Google Scholar 

  • Gaussier et al., 1998. Gaussier, P., Leprêtre, S., Joulain, C., Revel, A., Quoy, M., and Banquet, J. (1998). Animal and robot learning: experiments and models about visual navigation. In Seventh European Workshop on Learning Robots-EWLR’98, Edinburgh, UK.

    Google Scholar 

  • Gaussier et al., 1997b. Gaussier, P., Moga, S., Banquet, J., and Quoy, M. (1997b). From perception-action loops to imitation processes: A bottom-up approach of learning by imitation. In Socially Intelligent Agents, AAAI fall symposium, pages 49–54, Boston.

    Google Scholar 

  • Gaussier et al., 1999. Gaussier, P., Moga, S., Banquet, J., and Quoy, M. (1999). From perception-action loops to imitation processes. Applied Artificial Intelligence, 1(7).

    Google Scholar 

  • Gaussier and Zrehen, 1994. Gaussier, P. and Zrehen, S. (1994). A topological map for on-line learning: Emergence of obstacle avoidance in a mobile robot. In From Animals to Animats: SAB’94, pages 282–290, Brighton. MIT Press.

    Google Scholar 

  • Gaussier and Zrehen, 1995. Gaussier, P. and Zrehen, S. (1995). Perac: A neural architecture to control artificial animals. Robotics and Autonomous Systems, 16(2–4):291–320.

    Article  Google Scholar 

  • Goetz and Walters, 1997. Goetz, P. and Walters, D. (1997). The dynamics of recurrent behavior networks. Adaptive Behavior, 6(2):247–283.

    Article  Google Scholar 

  • Meyer and Wilson, 1991. Meyer, J. and Wilson, S. (1991). From animals to animats. In Press, M., editor, First International Conference on Simulation of Adaptive Behavior. Bardford Books.

    Google Scholar 

  • Millan and Torras, 1992. Millan, J. R. and Torras, C. (1992). A reinforcement connectionist approache to robot path finding in non-maze-like environments. Machine Learning, 8:363–395.

    Google Scholar 

  • Revel, 1997. Revel, A. (1997). Contrôle d’un robot mobile autonome par une approche neuromimétique. PhD thesis, U. de Cergy-Pontoise.

    Google Scholar 

  • Revel et al., 1998. Revel, A., Gaussier, P., Leprêtre, S., and Banquet, J. (1998). Planification versus sensory-motor conditioning: what are the issues? In Pfeifer, R., Blumberg, B., Meyer, J., and Wilson, S., editors, From Animals to Animats: Simulation of Adaptive Behavior SAB’98, pages 129–138. MIT Press.

    Google Scholar 

  • Schmajuk and Blair, 1992. Schmajuk, N. and Blair, H. (1992). Place learning and the dynamics of spatial navigation: a neural network approach. Adaptive Behavior, 1:353–385.

    Article  Google Scholar 

  • Schmajuk and Thieme, 1992. Schmajuk, N. and Thieme, A. (1992). Purposive behavior and cognitive mapping: a neural network model. Biological Cybernetics, 67:165–174.

    Article  Google Scholar 

  • Schölkopf and Mallot, 1994. Schölkopf, B. and Mallot, H. (1994). View-based cognitive mapping and path-finding. Arbeitsgruppe Bülthoff 7, Max-Planck-Institut für biologische kybernetik.

    Google Scholar 

  • Schöner et al., 1995. Schöner, G., Dose, M., and Engels, C. (1995). Dynamics of behavior: theory and applications for autonomous robot architectures. Robotics and Autonomous System, 16(2–4):213–245.

    Article  Google Scholar 

  • Thinus-Blanc, 1996. Thinus-Blanc, C. (1996). Animal Spatial Navigation. World Scientific.

    Google Scholar 

  • Tolman, 1948. Tolman, E. (1948). Cognitive maps in rats and men. The Psychological Review, 55(4).

    Google Scholar 

  • Trullier et al., 1997. Trullier, O., Wiener, S., Berthoz, A., and Meyer, J. (1997). Biologically based artificial navigation systems: review and prospects. Progress in Neurobiology, 51:483–544.

    Article  Google Scholar 

  • Tyrrell, 1993. Tyrrell, T. (1993). Computational Mechanisms for Action Selection. PhD thesis, University of Edinburgh.

    Google Scholar 

  • Verschure and Pfeifer, 1992. Verschure, P. and Pfeifer, R. (1992). Categorization, representation, and the dynamics of system-environment interaction. In From Animals to Animats: SAB’92, pages 210–217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Quoy, M., Gaussier, P., Leprêtre, S., Revel, A., Banquet, JP. (2000). A Planning Map for Mobile Robots: Speed Control and Paths Finding in a Changing Environment. In: Wyatt, J., Demiris, J. (eds) Advances in Robot Learning. EWLR 1999. Lecture Notes in Computer Science(), vol 1812. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40044-3_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-40044-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41162-8

  • Online ISBN: 978-3-540-40044-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics