Efficient hardware implementation of the DES

  • Frank Hoornaert
  • Jo Goubert
  • Yvo Desmedt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 196)


Several improvements to realize implementations for DES are discussed. One proves that the initial permutation and the inverse initial permutation can be located at the input, respectively the output of each mode in DES. A realistic design for an exhaustive key search machine is presented.


Data Encryption Standard Task Unit Initial Permutation Efficient Hardware Implementation Time Critical Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    R. Cushman, “Data encryption chips provide security, is it false security,” EDN, February 1982, pp. 39–42.Google Scholar
  2. [2]
    A. Konheim, “Cryptography: A Primer,” John Wiley, Toronto, 1981.zbMATHGoogle Scholar
  3. [3]
    M. Davio, Y. Desmedt, M. Fosseprez, R. Govaerts, J. Hulsbosch, P. Neutjens, P. Piret, J.-J. Quisquater, J. Vandewalle, P. Wouters, “Analytical Characteristics of the DES,” Advances in Cryptology, Proc. Crypto 83, August 1983, Plenum, pp. 171–202.Google Scholar
  4. [4]
    D. Davies, “The Data Encryption Standard,” International Course on Cryptography and Computer Security, ESAT, K.U.Leuven, Belgium, November 29–December 2, 1983.Google Scholar
  5. [5]
    J. Goubert and F. Hoornaert, “Study about an efficient chip implentation of the DES (in Dutch: Studie van een efficiente implementatie van het DES algoritme op chip),” Final work, K.U.Leuven., Department Elektrotechniek, June 1984.Google Scholar
  6. [6]
    H. De Man, L. Reynders, M. Bartholomeus and J. Cornelissen, “Plasco: A silicon compiler for nMOS and CMOS PLA,” Proc. IFIP: VLSI 83, Trondheim, Norway, August 1983, pp. 171–181.Google Scholar
  7. [7]
    Y. Desmedt, J.-J. Quisquater and M. Davio, “Dependence of output on input in DES: Small avalanche characteristics,” Advances in Cryptology, Proc. Crypto 84, August 1984, Springer-Verlag.Google Scholar
  8. [8]
    FIPS publication, “DES modes of operation,” Federal Information Processing Standard, no.81, National Bureau of Standards, U. S. Department of Commerce, Washington D. C., U. S. A., December 2, 1980.Google Scholar
  9. [9]
    “Data Encryption Standard,” FIPS (NBS Federal Information Processing Standards Publ.), no. 46, January 1977Google Scholar
  10. [10]
    C. Mead and Conway, “An introduction to VLSI systems,” Addison Wesley, Reading, 1980.Google Scholar
  11. [11]
    M. Hellman, R. Merkle, R. Schroeppel, L. Washington, W. Diffie, S. Pohlig and P. Schweitzer, “Results of an Initial Attempt to Cryptanalyze the NBS Data Encryption Standard,” Electrical Engineering Dep. Stanford Univ., SEL 76–042.Google Scholar
  12. [12]
    American National Standard Institute, “Financial Institution Keymanagement” Draft April 1984, N216.Google Scholar
  13. [13]
    C. H. Meyer and S. M. Matyas, “Cryptography: A New Dimension in Computer Data Security,” J. Wiley, New York, 1982.zbMATHGoogle Scholar
  14. [14]
    M. Davio, Y. Desmedt, J. Goubert, F. Hoornaert. and J.-J. Quisquater, “Efficient hardware and software implementations to the DES,” Abstract, Advances in Cryptology, Proc. Crypto 84, August 1984, Springer-Verlag.Google Scholar
  15. [15]
    W. Diffie and M. E. Hellman, “Exhaustive cryptanalysis of the NBS Data Encryption Standard,” Computer, vol. 10, no. 6, pp. 74–84, June 1977.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Frank Hoornaert
    • 1
  • Jo Goubert
    • 1
  • Yvo Desmedt
    • 1
  1. 1.Laboratorium ESATKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations