Skip to main content

Aerosol and chemical processes in the atmosphere

  • Chapter
Atmospheric Aerosol Properties

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

  • 1217 Accesses

5.7 Conclusion

An apparent conclusion from a brief review of heterogeneous chemical processes in the atmosphere is that the latest studies, especially studies of interaction of aerosols and MGCs in the atmosphere, are only in their initial stages. In particular, the climatic role of heterogeneous processes in the destruction of ozone molecules and in their transport from the stratosphere is very significant, and there is no doubt that modelling the heterogeneous processes of chemical transformations of atmospheric matter requires a further specification of the processes of generation of initial products, as well as numerical modelling of the rates of heterogeneous reactions.

The field observations of the ozone content in the atmosphere under different meteorological conditions and at different levels of pollution, as well as an overview of theoretical and experimental data, show that the problem of the impact of aerosols, and in particular dust outflows, on variations of the ozone content in the atmosphere is far from being unique. Even repeatedly observed marked decreases of ozone content in the layers with aerosol pollutants can be caused both by direct destruction of an ozone molecule on dust particles or by other processes. Therefore, further parallel synchronous observations of the content of ozone, aerosols, and other admixtures in the atmosphere together with measurements of several meteorological parameters are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5.8 Bibliography

  1. Aldaz L. Flux measurements of atmospheric ozone over land and water. J. Geophys. Res., 1969, 74(28), 6943–6946.

    Google Scholar 

  2. Almogeya Kh. R., Kobrera K. A., and Svistev P. F. Some data on the Cuban surface ozone. Reports at the Working Meeting on Study of Atmospheric Ozone. Tbilisi, 23–27 November 1981. Metsniereba, Tbilisi, 1982, pp. 247–251 [in Russian].

    Google Scholar 

  3. Bashlykov V. M., Vakhtel A. V., Maslayeva N. I., and Ivanov A. A. Studies of the diurnal variations in concentrations of NO2 and O3 in the atmosphere of Moscow using the trace spectral-optical method. Physics of the Atmos. and Ocean, 1994, 30(1), 53–58 [in Russian].

    Google Scholar 

  4. Baumann K., Ilt F., Zhao J. Z., and Chameides W. L. Discrete measurements of reactive gases and fine particle mass and composition during the 1999 Atlanta Supersite Experi ment. J. Geophys. Res., 2003, 108(D7), SOS4/1–SOS4/20.

    Article  Google Scholar 

  5. Bazhanov V. M. and Petrov V. N. The ozone content in the North Atlantic surface layer. Meteorology and Hydrology, 1986, 6, 60–67 [in Russian].

    Google Scholar 

  6. Belan B. D. and Panchenko M. V. An estimation of the ozone sink on aerosol particles. Optics of the Atmos. and Ocean, 1992, 5(6), 647–651 [in Russian].

    Google Scholar 

  7. Belan B. D. and Skliadneva T. K. Changes in the tropospheric ozone concentration as a function of solar radiance. Optics of the Atmos. and Ocean, 1999, 12(8), 725–729 [in Russian].

    Google Scholar 

  8. Bian H. and Zender C. S. Mineral dust and global tropospheric chemistry: Relative roles of photolysis and heterogeneous uptake. J. Geophys. Res., 2003, 108(D21), ACH8/1–ACH8/14.

    Article  Google Scholar 

  9. Bian H., Prather M. J., and Takemura T. Tropospheric aerosol impacts on trace gas budgets through photolysis. J. Geophys. Res., 2003, 108(D8), ACH4/1–ACH4/10.

    Article  Google Scholar 

  10. Chameides W. L. and Walker J. C. G. A time-dependent photochemical model for ozone near the ground. J. Geophys. Res., 1976, 81(3), 413–420.

    Google Scholar 

  11. Claeys M., Graham B., Vas G., Wang W., Vermeylen R., Pashynska V., Cafmeyer J., Guyon P., Andreae M. O., Artaxo P., et al. Formation of secondary organic aerosols through photo-oxidation of isoprene. Science, 2004, 303(5661), 1173–1176.

    Article  Google Scholar 

  12. Baev A. A. and Svirezhev Yu. M. (eds). Consequences of a Nuclear War. Physical and Atmospheric Effects. Mir Publishing, Moscow, 1988, 391 pp. [in Russian].

    Google Scholar 

  13. Desboeufs K. V., Losno R., and Colin J. L. Relationship between droplet pH and aerosol dissolution kinetics: Effect of incorporated aerosol particles on droplet pH during cloud processing. Atmos. Chem., 2003, 46(2), 159–172.

    Article  Google Scholar 

  14. EUROTRAC-2 TOR-2. Tropospheric Ozone Research Annual Report 1998. Inter. Sci. Secretariat, Muenchen, 1999, 163 pp.

    Google Scholar 

  15. Fishman J. and Crutzen P. J. A numerical study of tropospheric model. J. Geophys. Res., 1977, 82(37), 5897–5906.

    Google Scholar 

  16. Fishman J., Solomon S., and Crutzen P. J. Observational data in support of significant in situ photochemical source of tropospheric ozone. Tellus, 1979, 31, 432–446.

    Article  Google Scholar 

  17. Gelenczér A., Hoffer A., Krivácsy Z., Kiss G., Molnár A., and Mészáros E. On the possible origin of humic matter in fine continental aerosol. J. Geophys. Res., 2002, 107(D21), ICC2/1–ICC2/6.

    Google Scholar 

  18. Gleason J. F., Hsu N. C, and Torres O. Biomass burning smoke measured using back-scattered ultraviolet radiation: SCAR-B and Brazilian smoke interannual variability.. J. Geophys. Res., 1998, 103(D24), 31969–31978.

    Article  Google Scholar 

  19. Gordov E. P., Rodimova O. B., and Fazliyev A. Z. Atmospheric Optical Processes: Simple Non-linear Models. Institute of Optics Atmosphere, Siberian Branch of RAS Publ., Tomsk, 2002, 251 pp. [in Russian].

    Google Scholar 

  20. Griffin R. J., Dabdub D., and Seinfeld J. H. Secondary organic aerosol. 1. Atmospheric chemical mechanism for production of molecular constituents. J. Geophys. Res., 2002, 107(D17), AAC3/1–AAC3/26.

    Google Scholar 

  21. Griffin R. J., Nguyen K., Dabdub D., and Seinfeld J. H. A coupled hydrophobic-hydrophilic model for predicting secondary aerosol formation. Chemistry, 2003, 44, 171–190.

    Google Scholar 

  22. Guirgzhdene R. V., Shopauskas K. K., and Guirgzhdis A. I. On nocturnal ozone maxima in the atmospheric surface layer. Reports at the Working Meeting on Study of Atmospheric Ozone, Tbilisi, 23–27 November 1981. Metsniereba, Tbilisi, 1982, pp. 295–299 [in Russian].

    Google Scholar 

  23. Hynes R. G., Fernandez M. Z., and Cox R. A. Uptake of HNO3 on water-ice and coadsorption of HNO3 and HC1 in the temperature range 210-235 K. J. Geophys. Res., 2003, 108(D24), AAC18/1–AAC18/11

    Google Scholar 

  24. Iacobellis S. F., Frouin R., and Somerville R. C. J. Direct climate forcing by biomass-burning aerosols: Impact of correlations between controlling variables. J. Geophys. Res., 1999, 104(D10), 12031–12045.

    Article  Google Scholar 

  25. Ivlev L. S., Sirota V. G., Skoblikova A. L., and Khvorostovsky S. N. Spectrophotometric studies of the ozone-oxides interaction kinetics. Proc. Central Aerological Observatory, 1982, 149, 85–90 [in Russian].

    Google Scholar 

  26. Ivlev L. S., Kondratyev K. Ya., Maksimenko O. V., Sirota V. G., and Shashkin A. V. Periodic variations of ozone and solar radiation in the atmospheric surface layer. Atmo spheric Optics, 1988, 1(11), 81–88 [in Russian].

    Google Scholar 

  27. Ivlev L. S. On the impact of dust outflows on the atmospheric ozone concentration. Proc. of Leningrad State Univ. Press, 1988, 101, 63–79 [in Russian].

    Google Scholar 

  28. Ivlev L. S. and Chelibanov V. P. Measurements of variations of ozone concentration in the North Atlantic surface layer. The All-Union Conference on Atmospheric Ozone, 2–6 October 1998. Suzdal, Moscow Phys. Techn. Institute, Dolgoprudny, pp. 111–112 [in Russian].

    Google Scholar 

  29. Ivlev L. S., Sirota V. G., and Khvorostovsky S. N. The impact of oxidation of volcanic sulphur dioxide on the content of sulphuric-acid aerosols and ozone in the stratosphere. Optics of the Atmos., 1990, 3(6), 37–43 [in Russian].

    Google Scholar 

  30. Ivlev L. S. and Mikhailov E. F. Variations of the surface ozone concentration and their connection with atmospheric pollutions under urban conditions. In: Complex analysis of atmospheric pollution (ANZAG-87, Part 1). Gylym, Alma-Ata, 1990, pp. 119–125 [in Russian].

    Google Scholar 

  31. Ivlev L. S., Basov L. L., Sirota V. G., and Smyshlayev S. P. The photostimulated aerosol sink of atmospheric ozone and methane. Ecol. Chemistry, 1992, 1, 77–86 [in Russian].

    Google Scholar 

  32. Ivlev L. S. and Chelibanov V. P. A short-period variability of the atmospheric ozone content, and the role of aerosols in this variability. In: L. S. Ivlev (ed.), Natural and Anthropogenic Aerosols. St Petersburg State Univ. Press, St Petersburg, 2003, pp. 383–407 [in Russian].

    Google Scholar 

  33. Ivlev L. S. Temporal variability of the ozone content in the lower atmosphere. In: V. I. Osechkin (ed.), Atmospheric Ozone. Leningrad Politechnic Institute Publ., Leningrad, 1992, pp. 82–106.

    Google Scholar 

  34. Jacobson M. Z. Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation, condensation, dissolution, and reversible chemistry among multiple size distributions. J. Geophys. Res., 2002, 107(D19), AAC2/1–AAC2/23.

    Google Scholar 

  35. Jordan C. E., Dibb J. E., Anderson B. E., and Fuelberg H. E. Uptake of nitrate and sulfate on dust aerosols during TRACE-P. J. Geophys. Res., 2003, 108(D21), GTE38/1–GTE38/10.

    Google Scholar 

  36. Jourdain B. and Legrand M. Year-round records of bulk and size-segregated aerosol composition and HC1 and HNO3 levels in the Dumont d’Urville (coastal Antarctica) atmosphere: Implications for sea-salt aerosol fractionation in the winter and summer. J. Geophys. Res., 2002, 107(D22), ACH 20/1–ACH 20/13.

    Article  Google Scholar 

  37. Kalberer M., Paulsen D., Sax M., Steinbacher M., Dommen J., Prevot A. S. H., Fisseha R., Weingartner E., Frankevich V., Zenobi R., et al. Identification of polymers as major components of atmospheric organic aerosols. Science, 2004, 303(5664), 1659–1662.

    Article  Google Scholar 

  38. Kawamura K., Umemoto N., and Mochida M. Water-soluble dicarboxylic acids in the tropospheric aerosols collected over east Asia and western North Pacific by ACE-Asia C-130 aircraft. J. Geophys. Res., 2003, 108(D23), ACE7/1–ACE7/7.

    Article  Google Scholar 

  39. Kondratyev K. Ya. Climate Shocks: Natural and Anthropogenic. Wiley. New York, 1988, 296 pp.

    Google Scholar 

  40. Kondratyev K. Ya. and Varotsos C. A. Atmospheric Ozone Variability: Implications for Climate Change, Human Health, and Ecosystems. Springer-Praxis, Chichester, UK, 2000, 617 pp.

    Google Scholar 

  41. Kondratyev K. Ya. The aerosol-induced radiative forcing. Optics of the Atmos. and Ocean, 2003, 21(1), 5–16 [in Russian].

    Google Scholar 

  42. Korontzi S., Ward D. E., Susott R. A., Yokelson R. J., Justice C. O., Hobbs P. V., Smithwick E. A. H., and Hao W. M. Seasonal variation and ecosystem dependence of emission factors for selected trace gases and PM-2.5 for southern African Savanna fires. J. Geophys. Res., 2003, 108(D24), ACH7/1–ACH7/14.

    Article  Google Scholar 

  43. Krueger B. J., Grassian V. H., Laskin A., and Cowin J. P. The transformation of soil atmospheric particles into liquid droplets through heterogeneous chemistry: Laboratory insights into the processing of calcium containing mineral dust aerosol in the troposphere. J. Geophys. Res. Lett., 2003, 30(8), 48/1–48/4.

    Google Scholar 

  44. Laskin A., Gasper D. J., Wang W., Hunt S. W., Cowin J. P., Colson S. D., and Finloyson-Pitts B. J. Reactions at interfaces as a source of sulfate formation in sea salt particles. Science, 2003, 301, 340–344.

    Article  Google Scholar 

  45. Lee Y.-N., Weber R., Ma Y., Orsini D., Maxwell-Meier K., Blake D., Meinardi S., Sachse G., Harward C, Chen T.-Y., et al. Airborne measurements of inorganic ionic components of fine aerosol particles using the particle-into-liquid sampler coupled to ion chromatography technique during ACE-Asia and TRACE-P. J. Geophys. Res., 2003, 108(D23), ACE14/1–ACE14/14.

    Article  Google Scholar 

  46. Lefer B. L., Shetter R. E., Hall S. R., Crawford J. H., and Olson J. R. Impact of clouds and aerosols on photolysis frequencies and photochemistry during TRACE-P. 1. Analysis using radiative transfer and photochemical box models. J. Geophys. Res., 2003, 108(D21), GTE42/1–GTE42/12.

    Article  Google Scholar 

  47. Liao H., Adams P. J., Chung S. H., Seinfeld J. H., Mickley L. J., and Jacob D. J. Interactions between tropospheric chemistry and aerosols in a united general circulation model. J. Geophys. Res. 2003, 108(D1), 1/1–1/23.

    Article  Google Scholar 

  48. Liu S.C., Kley D., McFarland M., Mahlman J. D., and Levy H., II. On the origin of tropospheric ozone. J. Geophys. Res., 1980, 85(C12), 7546–7552.

    Google Scholar 

  49. Liu W., Hopke P. K., and Van Curen R. A. Origins of fine aerosols mass in the western Unites States using positive matrix factorization. J. Geophys. Res., 2003, 108(D23), AAC1/1–AAC1/18.

    Google Scholar 

  50. Logan J. A. Troposphere-ozone: Seasonal behavior, trends, and anthropogenic influence. J. Geophys. Res., 1985, D90(6), 10463–10482.

    Google Scholar 

  51. Ma J., Tang J., Li S.-M., and Jacobson M. Z. Size distributions of ionic aerosols measured at Waliguan Observatory. 1. Implication for nitrate gas-to-particle transfer processes in the free troposphere. J. Geophys. Res., 2003, 108(D17), ACH8/1–ACH8/12.

    Article  Google Scholar 

  52. Ma Y., Weber R. J., Lee Y.-N., Orsini D. A., Maxwell-Meier K., Thornton D. C, Bandy A. R., Clarke D. R., Sachse G. W., Fuelberg H. E., et al. Characteristics and influence of biosmoke on the fine-particle ionic composition measured in Asian outflow during the Transport and Chemical Evolution over the Pacific (TRACE-P) experiment. J. Geophys. Res., 2003, 108(D21), GTE37/1–GTE37/16.

    Article  Google Scholar 

  53. Marenco A. Variations of CO and O3 in the troposphere evidence of O3 photochemistry. Atmospher. Environm., 1986, 5, 911–918.

    Article  Google Scholar 

  54. Martin R. V., Jacob D. J., Yantosca R. M., Chin M., and Ginoux P. Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. J. Geophys. Res., 2003, 108(D3), ACH6/1–ACH6/14.

    Article  Google Scholar 

  55. Marenco A. Variations of CO and O3 in the troposphere evidence of O3 photochemistry. Atmospher. Environm., 1986, 20(5), 911–918.

    Article  Google Scholar 

  56. Meszaros E. Fundamentals of Atmospheric Aerosol Chemistry. Akademiai Kiado, Budapest, 1999, 308 pp.

    Google Scholar 

  57. Olszyna K., Cadle R. D., and De Pena R. J. Stratospheric heterogeneous decomposition of ozone. J. Geophys. Res., 1979, 84(C4), 1771–1775.

    Article  Google Scholar 

  58. Perov S. I. and Khrguian A. Kh. Present Problems of Atmospheric Ozone. Gidrometeoiz-dat, Leningrad, 1980, 280 pp. [in Russian].

    Google Scholar 

  59. Popov V. A. and Chernykh L. N. The photochemical type of the urban atmospheric pollution. In: K. Ya. Kondratyev (ed.), Problems of the Environmental Pollution Control. Gidrometeoizdat, Leningrad, 1981, pp. 54–59.

    Google Scholar 

  60. Poppe J., Koppmann R., and Rudolph J. Ozone formation in biomass burning plumes: Influence of atmospheric dilution. J. Geophys. Res. Lett., 1998, 25(20), 3823–3826.

    Article  Google Scholar 

  61. Reshetov V. D. Variability of Meteorological Elements in the Atmosphere. Gidrometeoizdat, Leningrad, 1973, 249 pp. [in Russian].

    Google Scholar 

  62. Rodriguez M. A. and Dabdub D. Monte Carlo uncertainty and sensitivity analysis of the CACM chemical mechanism. J. Geophys. Res., 2003, 108(D15), 2/1–2/9.

    Article  Google Scholar 

  63. Seinfeld J. H. and Pandis S. N. Atmospheric Chemistry and Physics. From Air Pollution to Climate Change. Wiley, New York, 1998, 1327 pp.

    Google Scholar 

  64. Sirota V. G. The impact of environmental pollution on the content of secondary aerosols, ozone and other minor gaseous components of the atmosphere. Doctoral thesis. St Peters burg State Univ., St Petersburg, 1992, Abstract, 30 pp. [in Russian].

    Google Scholar 

  65. Smyshlayev S. P. A Numerical simulation of the impact of anthropogenic factors on atmospheric ozone. Ph.D. thesis. St Petersburg State Univ., St Petersburg, 1993, Abstract, 19 pp. [in Russian].

    Google Scholar 

  66. Staehelin J. and Holgne J. Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide. Environ. Sci. Techology, 1982, 16, 676–681.

    Article  Google Scholar 

  67. Tegen I., Harrison S. P., Kohfeld K., Prentice I. C, Coe M., and Heimann M. Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study. J. Geophys. Res., 2003, 108(D21), AAC14/1–AAC14/27.

    Google Scholar 

  68. Chelibanov V. P. (ed.) The Joint American-Soviet Experiment on Study of Characteristics of Atmospheric Aerosol, Radiation and Ozone. Observation Materials and Experimental Data (Section: Chemiluminescent ozone probe). Moscow Phys. Techn. Institute, Dolgoprudny, 1988, 117 pp. [in Russian].

    Google Scholar 

  69. Bolin B., Döös B. R., Yaeger J., and Worrin P. (eds). The Greenhouse Effect, Climate Changes and Ecosystems. Gidrometeoizdat, Leningrad, 1989, 557 pp. [in Russian].

    Google Scholar 

  70. Trockine D., Iwasaka Y., Matsuki A., Yamada M., Kim Y.-S., Nagatani T., Zhang D., Shi G.-Y., and Shen Z. Mineral aerosol particles collected in Dunhuang, China, and their comparison with chemically modified particles collected over Japan. J. Geophys. Res., 2003, 108(D23), ACEl0/l–ACEl0/11.

    Google Scholar 

  71. Wang S., Ackermann R., Spicer C. W., Fast J. D., Schmeling M., and Stitz J. Atmo spheric observations of enhanced NO2-HONO conversion on mineral dust particles. J. Geophys. Res. Lett., 2003, 30(11), 49/1–49/4.

    Google Scholar 

  72. Wang Y., Jacob D. J., and Logan J. A. Global simulation of the tropospheric O3-NO2-hydrocarbon chemistry. 1. Model simulation. 2. Model evaluation and global ozone budget. J. Geophys. Res., 1998, 103(D9), 10713–10725, 10727–10755.

    Article  Google Scholar 

  73. Zuev V. V. The behaviour of ozone in the surface layer: Possible explanations. Optics of the Atmos. and Ocean, 1998, 11(12), 1356–1357 [in Russian].

    Google Scholar 

  74. Zvenigorodsky S. G. and Smyshlayev S. P. On possible change in ozone with an intensive disturbance of the aerosol component. Proc. of Academy Sci. Soviet Union, Physics of the Atmos. and Ocean, 1985, 21(10), 1056–1063 [in Russian].

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

(2006). Aerosol and chemical processes in the atmosphere. In: Atmospheric Aerosol Properties. Springer Praxis Books. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-37698-4_5

Download citation

Publish with us

Policies and ethics