Skip to main content

Aerosol formation processes

  • Chapter
Atmospheric Aerosol Properties

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

  • 1329 Accesses

4.10 Conclusion

The basic conclusion to be drawn from analysis of the present ideas about mechanisms of formation, and properties of atmospheric aerosols is that these ideas are still far from being adequate. This situation is especially substantial in the context of consideration of aerosol as one of the most important climate-forming factors. On the one hand, it is obvious that an interactive consideration of aerosol as a climate-forming atmospheric component is needed, and on the other hand, there is no doubt that the still highly uncertain data on the global spatial-temporal variability of aerosol properties and mechanisms of formation do not permit an adequate parameterization of the aerosol dynamics in climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.11 Bibliography

  1. Panchenko M. V. (ed.). Aerosols of Siberia (thematic issue). Optics of the Atmos. and Ocean, 2003, 16(5–6), 405–559.

    Google Scholar 

  2. Alfaro S. C, Gomes L., Rajot J. L., Lafon S., Gaudichet A., Chatenet B., Maille M., Cautenet G., Lasserre F., Cachier H., and Zhang X. Y. Chemical and optical characterization of aerosols measured in spring 2002 at the ACE-Asia supersite, Zhenbeitai, China. J. Geophys. Res., 2003, 108(D23), ACE9/1–ACE9/18.

    Google Scholar 

  3. Allen A. G., Oppenheimer C, Ferm M., Baxter P. J., Horrocks L. A., Galle B., McGonigle A. J. S., and Duffell H. J. Primary sulfate aerosol and associated emissions from Masaya Volcano, Nicaragua. J. Geophys. Res., 2002, 107(D23), ACH5/1–ACH5/8.

    Google Scholar 

  4. Anastasio C. and Martin S. T. Atmospheric nanoparticles. Rev. Miner. and Geochem., 2001, 44, 293–349.

    Google Scholar 

  5. Anderson T. L., Masonis S. J., Covert D. S., Ahlquist N. C, Howell S. G., Clarke A. D., and McNaughton C. S. Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia. J. Geophys. Res., 2003, 108(D23), ACE15/1–ACE15/19.

    Google Scholar 

  6. Andreae M. O., Fishman J., and Lindesay J. The Southern Tropical Regional Experiment (STARE): Transport and atmospheric chemistry near the Equator-Atlantic (TRACE-A) and Southern African Fire-Atmosphere Research Initiative (SAFARI): An introduction. J. Geophys. Res., 1996, 101(D19), 23519–23520.

    Google Scholar 

  7. Ankilov A. N., Baklanov A. M., Vlasenko A. L., Kozlov A. S., and Malyshkin S. B. Estimation of the concentration of aerosol-forming substances in the atmosphere. Optics of the Atmos. and Ocean, 2000, 13(6–7), 644–648.

    Google Scholar 

  8. Bahreini R., Jimenez J. L., Wang J., Flagan R. C, Seinfeld J. H., Jayne J. T., and Worsnop D. R. Aircraft-based aerosol size and composition measurements during ACE-Asia using an Aerodyne aerosol mass spectrometer. J. Geophys. Res., 2003, 108(D23), ACE13/1–ACE13/22.

    Google Scholar 

  9. Barth M. C. and Church A. T. Regional and global distributions and lifetime of sulfate aerosols from Mexico City and southeast China. J. Geophys. Res., 1999, 104(D23), 30231–30240.

    Google Scholar 

  10. Barth M. C, Rasch P. J., Kiehl J. T., Benkovitz C. M., and Schwartz S. E. Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry. J. Geophys. Res., 2000, 105(D5), 5123–5129.

    Google Scholar 

  11. Bates T. S. First Aerosol Characterization Experiment (ACE-1). Part 2. Preface. J. Geophys. Res., 1999, 104(D17), 21645–21647.

    Google Scholar 

  12. Bates T. S., Huebert B. J., Gras J. L., Criffiths F. B., and Durkee P. A. International Global Atmospheric Chemistry (IGAC) project’s First Aerosol Characterization Experiment (ACE-1): Overview. J. Geophys. Res., 1998, 103(D13), 16297–16318.

    Google Scholar 

  13. Berg O. H., Swietlicki E., and Krejci R. Hydroscopic growth of aerosol particles in the marine boundary layer over the Pacific and Southern Oceans during the First Aerosol Characterization Experiment (ACE-1). J. Geophys. Res., 1998, 103(D13), 16535–17545.

    Google Scholar 

  14. Berresheim H., Elste T., Tremmel H. G., Allen A. G., Hansson H.-C, Rosman K., Dal Maso M., Mäkelä J. M., Külmälä M., and O’Dowd C. D. Gas-aerosol relationships of H2SO4, MSA, and OH: Observations in the coastal marine boundary layer at Mace Head, Ireland. J. Geophys. Res., 2002, 107(D19), PAR5/1–PAR5/12.

    Google Scholar 

  15. Berresheim H., Huey J. W., Thorn R. P., Eisele F. L., Tanner D. J., Jefferson A. Measurements of dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, and aerosol ions at Palmer Station, Antarctics. J. Geophys. Res., 1998, 103(D1), 1629–1637.

    Google Scholar 

  16. Bishop J. K. B., Davis R. E., and Sherman J. T. Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science, 2002, 298(N5594), 817–821.

    Google Scholar 

  17. Borodulin A. I., Safatov A. S., Marchenko V. V., Shabanov A. N., Belan B. D., and Panchenko M. V. The vertical and seasonal variability of the concentration of the tropospheric aerosol biogenic component in the southern part of West Europe. Optics of the Atmos. and Ocean, 2003, 16(5–6), 422–425.

    Google Scholar 

  18. Boucher O. and Pham M. History of sulfate aerosol radiative forcings. Geophys. Res. Lett., 2002, 29(9), 2211–2214.

    Google Scholar 

  19. Boy M., Rannik Ü., Lehtinen K. E. J., Tarvainen V., Hakola H., and Külmälä M. Nucleation events in the continental boundary layer: Long-term statistical analyses of aerosol relevant characteristics. J. Geophys. Res., 2003, 108(D21), AAC5/1–AAC5/13.

    Google Scholar 

  20. Brooks S. D., Wise M. E., Cushing M., and Talbart M. A. Deliquescence behavior of organic/ammonium sulfate aerosol. Geophys. Res. Lett., 2002, 29(19), 23/5–23/4.

    Google Scholar 

  21. Cai X. and Griffin R. J. Modeling the formation of secondary organic aerosol in coastal areas: Role of the sea-salt aerosol organic layer. J. Geophys. Res., 2003, 108(D15), AAC3/1–AAC3/14.

    Google Scholar 

  22. Cappellato R., Peters N. E., and Meyers T. P. Above-ground sulful cycling in adjacent coniferous and deciduous forest and watershed sulfur retention in the Georgia Piedmont, USA. Water, Air, and Soil Pollut., 1998, 103(1–4), 151–171.

    Google Scholar 

  23. Carrico C. M., Kus P., Rood M. J., Quinn P. K., and Bates T. S. Mixtures of pollution, dust, sea-salt, and volcanic aerosol during ACE-Asia: Radiative properties as a function of relative humidity. J. Geophys. Res., 2003, 108(D23), ACE18/1–ACE18/18.

    Google Scholar 

  24. Chin M., Savoie D. L., Huebert B. J., Bandy A. R., Thornton D. C, Bates T. S., Quinn P. K., Saltzman E. S., and De Bruyn W. J. Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets. J. Geophys. Res., 2000, 105(D20), 24689–24712.

    Google Scholar 

  25. Chu D. A., Kaufman Y. J., Zibordi G., Chern J. D., Mao J., Li C, and Holben B. N. Global monitoring of air pollution over land from the Earth Observing System — Terra Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res., 2003, 108(D21), ACH4/1–ACH4/18.

    Google Scholar 

  26. Chuang P. Y. Measurement of the time-scale of hydroscopic growth for atmospheric aerosols. J. Geophys. Res., 2003, 108(D9), AAC5/1–AAC5/13.

    Google Scholar 

  27. Chugthai A. R., Miller M. I., Smith D. M., and Pitts J. R. Carbonaceous particle hydratation III. J. Atmos. Chem., 1999, 34(2), 259–279.

    Google Scholar 

  28. Colarco P. R., Toon O. B., Torres O., and Rasch P. J. Determining the UV imaginary index of refraction of Saharan dust particles from Total Ozone Mapping Spectrometer data using a three-dimensional model of dust transport. J. Geophys. Res., 2002, 107(D16), AAC4/1–AAC4/18.

    Google Scholar 

  29. Collins W. D., Rasch P. J., Eaton B. E., Khattatov B. V., and Lamarque J.-F. Simulating aerosols using achemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res., 2001, 106(D7), 7313–7336.

    Google Scholar 

  30. Cooke W. F., Ramasvamy V., and Kasibhatla P. A general circulation model study of the global carbonaceous aerosol distribution. J. Geophys. Res., 2002, 107(D16), ACH2/1–ACH2/32.

    Google Scholar 

  31. Dal Maso M., Külmälä M., Lehtinen K. E. J., Mäkelä J. M., Aalto P., and O’Dowd C. D. Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers. J. Geophys. Res., 2002, 107(D19), PAR2/1 PAR2/10.

    Google Scholar 

  32. Davis D., Chen G., Kasibhatla P., Jefferson A., Tanner D., Eisele F., Lenshow D., Neff W., and Berresheim H. DMS oxidation in the Antarctic marine boundary layer: Comparison of model simulations and field observations of DMS, DMSO, DMSO2, H2SO4(g), MSA(g), and MSA(p). J. Geophys. Res., 1998, 103(D1), 1657–1678.

    Google Scholar 

  33. Dibb J. E., Talbot R. W., Scheuer E. M., Blake D. R., Blake N. S., Gregory G. L., Sachse G. W., and Thomson D. C. Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics. J. Geophys. Res., 1999, 104(D5), 5785–5800.

    Google Scholar 

  34. Dibb J. E., Talbot R. W., Scheuer E. M., Seid G., Avery M. A., and Singh H. B. Aerosol chemical composition in Asian continental outflow during the TRACE-P campaign: Comparison with PEM-West B. J. Geophys. Res., 2003, 108(D21), GTE36/1–GTE36/13.

    Google Scholar 

  35. Dibb J. E., Talbot R. W., Seid G., Jordan C, Scheuet E., Atlas E., Blake N. J., and Blake D. R. Airborne sampling of aerosol particles: Comparison between surface sampling at Christmas Island and P-3 sampling during PEM-Tropica B. J. Geophys. Res., 2003, 108(D2), PEM2/1–PEM2/17.

    Google Scholar 

  36. Donchenko V. K. and Ivlev L. S. On an identification of aerosols of different origin. In: L. S. Ivlev (ed.), Natural and Anthropogenic Aerosols. St Petersburg Univ. Press, St Petersburg, 2001, pp. 41–51 [in Russian].

    Google Scholar 

  37. Duncan B. N., Martin R. V., Staudt A. C, Vevich R., and Logen J. A. Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J. Geophys. Res., 2003, 108(D2), ACH1/1–ACH1/22.

    Google Scholar 

  38. Feingold G. and Kreidenweis S. Does cloud processing of aerosol enhance droplet concentrations? J. Geophys. Res., 2000, 105(D19), 24351–24362.

    Google Scholar 

  39. Feingold G., Kreidenweis S. M., Stevens B., and Cotton W. R. Numerical simulations of strato-cumulus processing of cloud condensation nuclei through collision-coalescence. J. Geophys. Res., 1996, 101(D16), 21391–21402.

    Google Scholar 

  40. Fitzgerald J. W., Hoppel W. A., and Gelbard F. A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer. 1. Model description. J. Geophys. Res., 1998, 103(D13), 16085–16102.

    Google Scholar 

  41. Fitzgerald J. W., Marti J. S., Hoppel W. A., Frick G. M., and Gelbard F. A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer. 2. Model application. J. Geophys. Res., 1998, 103(D13), 16103–16117.

    Google Scholar 

  42. Fortin T. J., Shilling J. E., and Tolbert M. A. Infrared spectroscopic study of the low-temperature phase behavior of ammonium sulfate. J. Geophys. Res., 2002, 107(D10), AAC4/1–AAC4/10.

    Google Scholar 

  43. Franke K., Ansmann A., Müller A., Althaen D., Hataraman C, Reddy M. S., Wagner F., and Sheele R. Optical properties of the Indonesian haze. J. Geophys. Res., 2003, 108(D2), AAC6/1–AAC6/5.

    Google Scholar 

  44. Griffin R. J., Dabdub D., and Seinfeld J. H. Secondary organic aerosol. 1. Atmospheric chemical mechanism for production of molecular constituents. J. Geophys. Res., 2002, 107(D17), AAC3/1–AAC3/26.

    Google Scholar 

  45. Griffin R. J., Dabdub D., Kleeman M. J., Fraser M. P., Cass G. R., and Seinfeld J. H. Secondary organic aerosol. 3. Urban/regional scale model of size and composition-resolved aerosol. J. Geophys. Res., 2002, 107(D17), AAC5/1–AAC5/14.

    Google Scholar 

  46. Griffin R. J., Nguyen K., Dabdub D., and Seinfeld J. H. A coupled hydrophobic-hydrophilic model for predicting secondary organic aerosol formation. J. Atmos. Chem., 2003, 44(2), 171–190.

    Google Scholar 

  47. Grini A., Zender C. S., and Colarco P. R. Saltation sandblasting behavior during mineral dust aerosol production. Geophys. Res. Lett., 2002, 29(18), 15/1–15/4.

    Google Scholar 

  48. Guelle W., Balkanski Y. J., Schulz M., Marticorena B., Bergametti G., Moulin C, Arimoto R., and Perry K. D. Modeling the atmospheric distribution of mineral aerosol: Comparison with ground measurements and satellite observations for yearly and synoptic timescales over the North Atlantic. J. Geophys. Res., 2000, 105(D2), 1997–2012.

    Google Scholar 

  49. Hämeri K., O’Dowd C. D., and Hoell C. Evaluating measurements of new particle concentrations, source rates, and spatial scales during coastal nucleation events using condensation particle counters. J. Geophys. Res., 2002, 107(D19), PAR6/1–PAR6/11.

    Google Scholar 

  50. Hanson D. R. and Eisele F. L. Measurement of prenucleation molecular clusters in the NH3, H2SO4, H2O system. J. Geophys. Res., 2002, 107(D12), AAC10/1–AAC10/18.

    Google Scholar 

  51. Harrison R. M., Grenfell J. L., Savage N., Alien A., Clemitshaw K. C, Penkett S., Hewitt C. N., and Davison B. Observations of new particle production in the atmosphere of a moderately polluted site in eastern England. J. Geophys. Res., 2000, 105(D14), 17819–17832.

    Google Scholar 

  52. Hicks B. B., Artz R. S., Meyers T. P., and Hosker R. P., Jr. Trends in the eastern U.S. sulfur air quality from the Atmospheric Integrated Research Monitoring Network. J. Geophys. Res., 2002, 107(D12), ACH6/1–ACH6/12.

    Google Scholar 

  53. Hidy G. N. and Burton C. S. Atmospheric aerosol formation by chemical reaction. Intern. Chem. Kinetics, 1975, 7(7), 509–541.

    Google Scholar 

  54. Höller R., Ito K., Tohno S., and Kasahara M. Wavelength-dependent aerosol single-scattering albedo: Measurements and model calculations for a coastal site near the Sea of Japan during ACE-Asia. J. Geophys. Res., 2003, 108(D23), ACE16/1–ACE16/15.

    Google Scholar 

  55. Huebert B. J., Howell S. G., Zhuang L., Heath J. A., Litchy M. R., Wylie D. J., Kreidler-Moss J. L., Coppicus S., and Pfeiffer J. E. Filter and impactor measurements of anions and cations during the First Aerosol Characterization Experiment (ACE-1). J. Geophys. Res., 1998, 103(D13), 16493–16509.

    Google Scholar 

  56. Ivlev L. S. Chemical Composition and Structure of Atmospheric Aerosols. Leningrad State Univ. Press, Leningrad, 1982, 368 pp. [in Russian].

    Google Scholar 

  57. Ivlev L. S. Special features of the volcanic aerosol size distribution. Optics of the Atmos. and Ocean, 1996, 9(8), 1039–1057.

    Google Scholar 

  58. Ivlev L. S., Galindo J., and Kudriashov V. I. Estudio de aerosoles y cenizas dispersados durante la eruption de Volcan Popokatepetl del 21 de Diciembre 1994: Resultados preliminares. In: J. Galindo (ed.), Report Centro Universitario de Investigaciones en Ciencias de la Tierra. Universidad de Colima, Colima, Mexico, 1996, pp. 257–284.

    Google Scholar 

  59. Ivlev L. S., Kudriashov V. I., Arias M. E., and Vargas A. O. A complex study of the optical-meteorological parameters of the atmosphere near the Colima volcano (Mexico). Part 1. Dry season. Part 2. Wet season. Optics of the Atmos. and Ocean, 1998, 11(7), 748–767; 11(8), 884–898 [in Russian].

    Google Scholar 

  60. Ivlev L. S., Sirota V. G., and Khvorostovsky S. N. An impact of volcanic sulphur dioxide oxidation on the content of H2SO4 and ozone in the stratosphere. Optics of the Atmos. and Ocean, 1990, 3(1), 37–43.

    Google Scholar 

  61. Ivlev L. S., Kudriashov V. I., and Edwards A. Study of the size distribution and elemental composition of aerosols near the Paricutin volcano (Mexico) in the period of rains. Proc. Russian Geogr. Soc., 1998, 130(2), 38–43 [in Russian].

    Google Scholar 

  62. Ivlev L. S. On relationship between volcanic activity and climate characteristics. In: L. S. Ivlev (ed.), Natural and Anthropogenic Aerosols, St Petersburg State Univ. Press, St Petersburg, 1997, pp. 64–72 [in Russian].

    Google Scholar 

  63. Ivlev L. S., Vlasenko S. S., Kudriashov V. I., and Terekhin N. Yu. Some results of measurements of the content of aerosols and aerosol-forming gases in the surface layer of St. Petersburg and south-eastern sector of the Gulf of Finland. In: L. S. Ivlev (ed.), Natural and Anthropogenic Aerosols, St Petersburg State Univ. Press, St Petersburg, 2001, pp. 75–95 [in Russian].

    Google Scholar 

  64. Iwasaka Y., Shi G.-Y., Yamada M., Matsuki A., Trochkine D., Kim Y. S., Zhang D., Nagatani T., Shibata T., Nagatani M., et al. Importance of dust particles in the free troposphere over the Taklamakan Desert: Electron microscopic measurements of particles collected with a balloon-borne particle impactor at Danhuang, China. J. Geophys. Res., 2003, 108(D23), ACE12/1–ACE12/10.

    Google Scholar 

  65. Jimenez J. L., Bahreini R., Cocker D. R. III, Zhuang H., Varutbangkul V., Flagan R. C, Seinfeld J. H., O’Dowd C. D., and Hoffmann T. New particle formation from photooxidation of diiodomethane (CH2I2). J. Geophys. Res., 2003, 108(D10), AAC5/1–AAC5/25.

    Google Scholar 

  66. Johansen A. M., Siefert R. L., and Hoffmann M. R. Chemical composition of aerosols collected over the tropical North Atlantic Ocean. J. Geophys. Res., 2000, 105(D12), 15277–15312.

    Google Scholar 

  67. Jordan C. E., Anderson B. E., Talbot R. W., Dibb J. E., Fuelberg H. E., Hudgins C. H., Kiley C. M., Russo R., Scheuer E., Seid G., et al. Chemical and physical properties of bulk aerosols within four sectors observed during TRACE-P. J. Geophys. Res., 2003, 108(D21), GTE34/1–GTE34/19.

    Google Scholar 

  68. Kaufman Y. J., Tanré D., and Boucher O. A satellite view of aerosols in the climate system. Nature, 2002, 419, 215–223.

    Google Scholar 

  69. Kerminen V.-M., Hillamo R. E., Mäkelä T., Saffrezo J.-L., and Maenhut W. The physico-chemical structure of the Greenland summer aerosol and its relation to atmospheric processes. J. Geophys. Res., 1998, 103(D5), 5661–5670.

    Google Scholar 

  70. Komppula M., Lihavainen H., Hatakka J., Paatero J., Aalto P., Külmälä M., and Viisanen Y. Observations of new particle formation and size distributions at two different heights and surrounding in sub-Arctic area in northern Finland. J. Geophys. Res., 2002, 108(D9), AAC12/1–AAC12/11.

    Google Scholar 

  71. Kondratyev K. Ya. (ed.) Studies of the Environment from the Manned Orbital Stations. Gidrometeoizdat, Leningrad, 1972, 400 pp. [in Russian].

    Google Scholar 

  72. Kondratyev K. Ya. and Pozdniakov D. V. Aerosol Models of the Atmosphere. Nauka Publ., Moscow, 1981, 224pp. [in Russian].

    Google Scholar 

  73. Kondratyev K. Ya., Grigoryev Al. A., Pokrovsky O. M., and Shalina E. V. Satellite Remote Sensing of Atmospheric Aerosol. Gidrometeoizdat, Leningrad, 1983, 216pp. [in Russian].

    Google Scholar 

  74. Kondratyev K. Ya., Moskalenko N. I., and Pozdniakov D. V. Atmospheric Aerosol. Gidrometeoizdat, Leningrad, 1983, 224 pp. [in Russian].

    Google Scholar 

  75. Kondratyev K. Ya., Ivlev L. S., and Galindo I. Application of the ‘enrichment factor’ notion in studies of the volcanic eruption products. Proc. RAS, 1995, 394(6), 581–583 [in Russian].

    Google Scholar 

  76. Kondratyev K. Ya. and Galindo I. Volcanic Activity and Climate. A. Deepak Publ. Co., Hampton, VA, 1997, 382 pp.

    Google Scholar 

  77. Kondratyev K. Ya. Biogenic aerosol in the atmosphere. Optics of the Atmos. and Ocean, 2001, 14(3), 171–179.

    Google Scholar 

  78. Kondratyev K. Ya., Krapivin V. F., and Savinukh V. P. Perspectives of Civilization Development. Multi-dimensional Analysis. Logos Publ., Moscow, 2003, 573 pp. [in Russian].

    Google Scholar 

  79. Kondratyev K. Ya. Aerosol as a climate-forming component of the atmosphere. 1. Properties of aerosol of different types. Optics of the Atmos. and Ocean, 2004, 17(1), 1–20.

    Google Scholar 

  80. Kondratyev K. Ya. Aerosol as a climate-forming component of the atmosphere. 2. Remote sensing of the global spatial-temporal variability of aerosol and its climatic impact. Optics of the Atmos. and Ocean, 2004, 17(1), 23–34.

    Google Scholar 

  81. Kondratyev K. Ya. From nano-to global scales: Properties, formation processes, and implications of atmospheric aerosol 3. Processes of formation (nucleation) of aerosol. Optics of the Atmos. and Ocean, 2004, 17(10), 1–21.

    Google Scholar 

  82. Korhonen H., Lehtinen K. E. J., Pirjola L., Napari I., Vehkamäki H., Noppel M., and Külmälä M. Simulation of atmospheric nucleation mode: A comparison of nucleation models and size distribution representations. J. Geophys. Res., 2003, 108(D15), AAC12/1–AAC112/8.

    Google Scholar 

  83. Korhonen H., Napari I., Timmrech C, Vehkamäki H., Pirjola L., Lehtinen K. E. J., Lauri A., and Külmälä M. Heterogeneous nucleation as a potential sulphate-coating mechanism of atmospheric mineral dust particles and implications of coated dust on new particle formation. J. Geophys. Res., 2003, 108(D17), AAC4/1–AAC4/9.

    Google Scholar 

  84. Kozlov A. S., Ankilov A. N., Baklanov A. M., Vlasenko A. L., Eremenko S. I., and Malyshkin S. B. A study of mechanic processes of the sub-micron aerosol formation. Optics of the Atmos. and Ocean, 2000, 13(6d–7), 664–666.

    Google Scholar 

  85. Kudriashov V. I. and Ivlev L. S. Analysis of the elemental composition of atmospheric aerosol in the region of volcanoes Colima and Popokatepetl (Mexico) in 1994–1995. In: L. S. Ivlev (ed.), Proc. Int. Conf. ‘Natural and Anthropogenic Aerosol’, 29 September–4 October 1997, St Petersburg. St Petersburg State Univ. Press, St Petersburg, 1998, pp. 457–479 [in Russian].

    Google Scholar 

  86. Külmälä M. How particles nucleate and grow. Science, 2003, 302(5647), 1000–1001.

    Google Scholar 

  87. Laakso L., Mäkelä J. M., Pirjola L., and Külmälä M. Model studies on ion-induced nucleation in the atmosphere. J. Geophys. Res., 2002, 107(D20), AAC5/1–AAC5/19.

    Google Scholar 

  88. Laakso L., Külmälä M., and Lehtinen K. E. J. Effect of condensation rate enhancement factor on 3-nm (diameter) particle formation in binary ion-induced and homogeneous nucleation. J. Geophys. Res., 2003, 108(D18), ACH2/1–ACH2/6.

    Google Scholar 

  89. Laskin A., Caspar D. J., Wang W., Hunt S. W., Cowin J. P., Colson S. D., and Finlayson-Pitts B. J. Reactions at interfaces as a source of sulfate formation in sea-salt particles. Science, 2003, 301(5631), 340–344.

    Google Scholar 

  90. Lavoue D., Liousse C, Cachier H., Stocks B., and Goldammer J. G. Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. J. Geophys. Res., 2000, 105(D22), 26871–26890.

    Google Scholar 

  91. Lee J. H., Yoshida Y., Turpin B. J., Hopke P. K., Poirot R. L., Lioy P. J., and Oxley J. C. Identification of sources contributing to Mid-Atlantic regional aeroso. J. Air and Waste Manag. Assoc., 2002, 52, 1186–1205.

    Google Scholar 

  92. Lee S.-H., Reaves J. M., Wilson J. C, Hunton D. E., Viggiano A. A., Miller T. M., Ballenthin J. O., and Lait L. P. Particle formation by ion nucleation in the upper troposphere and lower stratosphere. Science, 2003, 301(5641), 1886–1889.

    Google Scholar 

  93. Leiva A. Contreras, Ivlev L. S., Vasilyev A. V., and Vasilyev S. L. Complex studies of aerosol in Mexico City. In: L. S. Ivlev (ed.), Proc. Third Int. Conf ‘Natural and Anthropogenic Aerosols’, Sankt-Petersburg. St Petersburg State Univ. Press, St Petersburg, 2001, pp. 72–75 [in Russian].

    Google Scholar 

  94. Li-Jones K. and Prospero J. M. Variation in the size distribution of non-sea-salt sulfate aerosol in the marine boundary layer at Barbados: Impact of African dust. J. Geophys. Res., 1998, 103(D13), 16073–16084.

    Google Scholar 

  95. Limbeck A., Külmälä M., and Puxbaum H. Secondary organic aerosol formation in the atmosphere via heterogeneous resction of gaseous isoprene on acidic particles. Geophys. Res. Lett., 2003, 30(19), ASC6/1–ASC6/4.

    Google Scholar 

  96. Liu C. L., Zhang J., and Shen Z. B. Spatial and temporal variability of trace metals in aerosol from desert region of China and the Yellow Sea. J. Geophys. Res., 2002, 107(D14), ACH17/1–ACH17/17.

    Google Scholar 

  97. Liu X. and Penner J. E. Effect of Mount Pinatubo H2SO4/H2O aerosol on ice nucleation in the upper troposphere using a global chemistry and transport model. J. Geophys. Res., 2002, 107(D12), AAC2/1–AAC2/18.

    Google Scholar 

  98. Maenhaut W., Schwarz J., Cafmeyer J., and Chi X. Aerosol chemical mass closure during the EUTRAC-2 Aerosol Intercomparison 2000. Nucl. Instrum. and Meth. Phys. Res. B, 2002, 189, 233–237.

    Google Scholar 

  99. Mari C, Suhre K., Rosset R., Bates T. S., Huebert B. J., Bandy A. R., Thornton D. C, and Businger S. One-dimensional modeling of sulfur species during the First Aerosol Characterization Experiment (ACE-1), Lagrangian B. J. Geophys. Res., 1999, 104(D17), 21733–21749.

    Google Scholar 

  100. McFiggans G., Cox R. A., Mössinger J. C, Allan B. J., and Plane J. M. C. Active chlorine release from marine aerosols: Roles for reactive iodine and nitrogen species. J. Geophys. Res., 2002, 107(D15), ACH10/1–ACH10/13.

    Google Scholar 

  101. Meszaros E. Fundamentals of Atmospheric Aerosol Chemistry. Akademiai Kiado, Budapest, 1999, 308 pp.

    Google Scholar 

  102. Murayama T., Masonis S. J., Redemann J., Anderson T. L., Schmid B., Livingston J. M., Russel P. B., Huebert B., Howell S. G., McNaughton C. S., Clarke A., et al. An intercomparison of lidar-derived aerosol optical properties with airborne measurements near Tokyo during ACE-Asia. J. Geophys. Res., 2003, 108(D23), ACE19/1–ACE19/19.

    Google Scholar 

  103. Murphy D. M., Anderson J. R., Quinn P. K., McInnes L. M., Brechtel F. J., Kreidenweis S. M., Middlebrook A. M., Posfai M., Thomson D. S., and Buseck P. R. Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. Nature, 1998, 392(6671), 62–65.

    Google Scholar 

  104. Nakajima T. Findings and Current Problems in the Asian Particle Environmental Change Studies: 2003. JST/CREST/APEX 2003 Interim Report, Tokyo, 2003, 240 pp.

    Google Scholar 

  105. Oberlander E. A., Brenninkmeijer C. A. M., Crutzen P. J., Elansky N. F., Golitsyn G. S., Granberg I. G., Scharffe D. H., Hofmann R., Belikov I. B., Paretzke H. G., et al. Trace gas measurements along the Trans-Siberian railroad: The TROICA-5 expedition. J. Geophys. Res., 2002, 197(D14), ACH13/1–ACH13/15.

    Google Scholar 

  106. O’Dowd C. D. On the spatial extent and evolution of coastal aerosol plumes. J. Geophys. Res., 2003, 108(D15), PAR10/1–PAR10/13.

    Google Scholar 

  107. O’Dowd C. D., Becker E., Mäkelä J. M., and Külmälä M. Aerosol physico-chemical characteristics over a boreal forest determined by volatility analysis. Boreal Envieon. Res., 2000, 5(4), 337–348.

    Google Scholar 

  108. O’Dowd C. D., Geever M., Hill M. K., Smith M. H., and Jennings S. G. New particle formation: Nucleation rates and spatial scales in the clean marine coastal environment. Geophys. Res. Lett., 1998, 25(10), 1661–1664.

    Google Scholar 

  109. O’Dowd C. D., Hämeri K., Mäkelä J., Pirjola L., Külmälä M., Jennings S. G., Berresheim H., Hansson H.-C, de Leeuw G., Kunz G. J., et al. A dedicated study of New Particle Formation and fate in the Coastal Environment (PARFORCE): Overview of objectives and achievements. J. Geophys. Res., 2002, 107(D19), PAR1/1–PAR1/16.

    Google Scholar 

  110. O’Dowd C. D., Hämeri K., Mäkelä J., Väkeva M., Aalto P., de Leeuw G., Kunz G. J., Becker E., Hansson H.-C., Allen A. C, et al. Coastal new particle formation: Environmental conditions and aerosol photochemical characteristics during nucleation bursts. J. Geophys. Res., 2002, 107(D19), PAR12/1–PAR12/17.

    Google Scholar 

  111. Pinto J. P., Turco R. P., and Toon O. B. Self-limiting physical and chemical effects in volcanic eruption clouds. J. Geophys. Res., 1989, 94(D8), 11165–11174.

    Google Scholar 

  112. Pirjola L., Laaksonen A., and Külmälä M. Sulfate aerosol formation in the Arctic Boundary Layer. J. Geophys. Res., 1998, 103(D7), 8309–8321.

    Google Scholar 

  113. Polissar A. V., Hopke P. K., Malm W. C, and Sisler J. F. Atmospheric aerosol over Alaska. 1. Spatial and seasonal variability. J. Geophys. Res., 1998, 103(D15), 19035–19044.

    Google Scholar 

  114. Polissar A. V., Hopke P. K., Pantero P., Malm W. C, and Sisler J. F. Atmospheric aerosol over Alaska. 2. Elemental composition and sources. J. Geophys. Res., 1998, 103(D15), 19045–19057.

    Google Scholar 

  115. Posfai M., Anderson J. R., Buseck P. R., and Sievering H. Soot and sulfate aerosol particles in the remote marine troposphere. J. Geophys. Res., 1999, 104(D17), 21685–21694.

    Google Scholar 

  116. Pryde L. T. Chemistry of the Air Environment. Cummings Publ. Co., Menlo Park, California, 1973, 169 pp.

    Google Scholar 

  117. Pun B. K., Griffin R. J., Seigneur C, and Seinfeld H. Secondary organic aerosol. 2. Thermodynamic model for gas/particle partitioning of molecular constituents. J. Geophys. Res., 2002, 107(D17), AAC4/1–AAC4/15.

    Google Scholar 

  118. Rankin A. M. and Wolff E. W. A year-long record of size-segregated aerosol composition at Halley, Antarctica. J. Geophys. Res., 2003, 108(D24), AAC9/1–AAC9/12.

    Google Scholar 

  119. Restad K., Isaksen I. S. A., and Berntsen T. K. Global distribution of sulphate in the troposphere. A three-dimensional model study. Atmos. Environ., 1998, 32(20), 3593–3609.

    Google Scholar 

  120. Reus M., Strom J., Curtius J., Pirjola L., Vignati E., Arnold F., Hansson H. C, Külmälä M., Leieveld J., and Raes F. Aerosol production and growth in the upper free troposphere. J. Geophys. Res., 2000, 105(D20), 24751–24762.

    Google Scholar 

  121. Roberts G. C, Nenes A., Seinfeld J. H., and Andreae M. O. Impact of biomass burning on cloud properties in the Amazon Basin. J. Geophys. Res., 2003, 108(D2), AAC9/1–AAC9/19.

    Google Scholar 

  122. Romero A. B. And Thiemens M. H. Mass-independent sulfur isotopic compositions in present-day sulfate aerosols. J. Geophys. Res., 2003, 108(D16), AAC8/1–AAC8/7.

    Google Scholar 

  123. Sano I., Mukai S., Okada Y., Holben B. N., Ohta S., and Takamura T. Optical properties of aerosols during APEX and ACE-Asia experiments. J. Geophys. Res., 2003, 108(D23), ACE17/1–ACE17/9.

    Google Scholar 

  124. Sansone F. J., Benitez-Nelson C. R., Resing J. A., de Carlo E. H., Vink S. M., Heath J. A., and Huebert B. J. Geochemistry of atmospheric aerosols generated from lava-seawater interactions. Geophys. Res. Lett., 2002, 29(9), 49/1–49/4.

    Google Scholar 

  125. Savarino J. and Legrand M. High northern latitude forest fires and vegetation emissions over the last millennium inferred from the chemistry of a central Greenland ice core. J. Geophys. Res., 1998, 103(D7), 8267–8279.

    Google Scholar 

  126. Savarino J., Lee C. C. W., and Thiemens M. H. Laboratory oxygen isotopic study of sulfur (IV) oxidation: Origin of the mass-independent oxygen isotopic anomaly in atmospheric sulfates and sulfate mineral deposits on Earth. J. Geophys. Res., 2000, 105(D23), 29079–29088.

    Google Scholar 

  127. Savoie D. L., Arimoto R., Keene W. C, Prospero J. M., Duce R. A., and Galloway J. N. Marine biogenic and anthropogenic contributions to non-sea-salt sulfate in the marine boundary layer over the North Atlantic Ocean. J. Geophys. Res., 2002, 107(D18), 3/1–3/21.

    Google Scholar 

  128. Sobanska S., Coeur C, Maenhaut W., Adams F. SEM-EDX characterization of tropospheric aerosols in the Negev Desert (Israel). J. Atmos. Chem., 2003, 44, 299–322.

    Google Scholar 

  129. Streets D. G., Bond T. C, Carmichael G. R., Fernandes S. D., Fu Q., He D., Klimont Z., Nelson S. M., Tsai N. Y., Wang M. Q., Woo J.-H., et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res., 2003, 108(D21), GTE30/1–GTE30/23.

    Google Scholar 

  130. Sun D., Chen F., Bloemendal J., and Su R. Seasonal variability of modern dust over the Loess Plateau of China. J. Geophys. Res., 2003, 108(D21), AAC3/1–AAC3/10.

    Google Scholar 

  131. Tegen I., Hollrig P., Chin M., Fung I., Jacob D., and Penner J. Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res., 1997, 102(D20), 23895–23915.

    Google Scholar 

  132. Tervahattu H., Juhanoja J., and Kupiainen K. Identification of an organic coating on marine aerosol particles by TOF-SIMS. J. Geophys. Res., 2002, 107(D16), ACH18/1–ACH18/7.

    Google Scholar 

  133. Twohy C. H., Clement C. F., Gandrud B. W., Weinheimer A. J., Campos T. L., Baumgardner D., Brune W. H., Falona I., Sachse G. W., Vay S. A., et al. Deep convection as a source of new particles in the midlatitude upper troposphere. J. Geophys. Res., 2002, 107(D21), AAC6/1–AAC6/10.

    Google Scholar 

  134. Väkevä M., Hämeri K., and Aalto P. P. Hygroscopic properties of nuclearion mode and Aitken mode particles during nucleation bursts and in background air on the west coast of Ireland. J. Geophys. Res., 2002, 107(D19), PAR9/1–PAR9/11.

    Google Scholar 

  135. Virkula A., Dingenen R. V., Raes P., and Hjorth J. Hydroscopic properties of aerosol formed by oxidation of limonene, α-pinene, and β-pinene. J. Geophys. Res., 1999, 104(D3), 3569–3580.

    Google Scholar 

  136. Wahiin P. One year’s continuous aerosol sampling at Summit in Central Greenland. In: E. W. Woiffand and R. C. Baler (eds), Chemical Exchange between the Atmosphere and Polar Snow (NATO AST Series 1. 1996, vol. 43.) Springer-Verlag, Berlin, Heidelberg, pp. 131–143.

    Google Scholar 

  137. Wang T.-J., Min J.-Z., Xu Y.-F., and Lam K.-S. Seasonal variations of anthropogenic sulfate aerosol and direct radiative forcing over China. Meteorol. Atmos. Phys., 2003, 84(3–4), 185–198.

    Google Scholar 

  138. Weber R. J., Lee S., Chen G., Wang B., Kapustin V., Moore K., Clarke A. D., Mauldin L., Kosciuch E., Cantrell C, et al. New particle formation in anthropogenic plumes advecting from Asia observed during TRACE-P. J. Geophys. Res., 2003, 108(D21), GTE35/1–GTE35/15.

    Google Scholar 

  139. Wolff E. W. and Cachier H. Concentrations and seasonal cycle of black carbon in aerosol at a coastal Antarctic station. J. Geophys. Res., 1998, 103(D9), 11033–11042.

    Google Scholar 

  140. Yu F. Nucleation rate of particles in the lower atmosphere: Estimated time needed to reach pseudo-steady state and sensitivity to H2SO4 gas concentration. Geophys. Res. Lett., 2003, 30(10), 33/1–33/4.

    Google Scholar 

  141. Zhang K. M. and Wexler A. S. A hypothesis for growth of fresh atmospheric nuclei. J. Geophys. Res., 2002, 107(D21), AAC15/1–AAC15/6.

    Google Scholar 

  142. Zuberi B., Bertram A. K., Cassa C. A., Molina L. T., and Molina R. J. Heterogeneous nucleation of ice in (NH4)2SO4-H2O particles with mineral dust immersions. Geophys. Res. Lett., 2002, 29(0), 142/1–142/4.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

(2006). Aerosol formation processes. In: Atmospheric Aerosol Properties. Springer Praxis Books. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-37698-4_4

Download citation

Publish with us

Policies and ethics