Skip to main content

Field observational experiments in America and western Europe

  • Chapter
Book cover Atmospheric Aerosol Properties

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

  • 1181 Accesses

2.7 Conclusion

The results of studies of the aerosol properties in different regions of America and western Europe, obtained during accomplishment of programmes of the field observation experiments discussed above, have demonstrated an exclusive diversity of physical properties and chemical composition of aerosol requiring further system-atization of observational data in order to substantiate more adequate models of aerosol than existing ones. Only on the basis of the use of such models it is possible to obtain more reliable estimates of possible aerosol climatic impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.8 Bibliography

  1. Alexandrov M. D., Lacis A. A., Carlson B. E., and Cairns B. Atmospheric aerosol and trace gases parameters derived from local MFRSR network: Multi-instrument data fusion in comparison with satellite retrievals. Proc. of the International Society for Optical Engineering, 2002, 4882, 498–509.

    Google Scholar 

  2. Allan J. D., Jimenez J. L., Williams P. I., Alfarra M. R., Bower K. N., Jayne J. T., Coe H., and Worsnop D. R. Quantitative sampling using an Aerodyne aerosol mass spec trometer. 1. Techniques of data interpretation and error analysis. J. Geophys. Res., 2003, 108(D3), AACl/l–AACl/10.

    Google Scholar 

  3. Allan D. R., Alfarra M. R., Bower K. N., Williams P. I., Gallagher M. W., Jimenez J. L., McDonald A. G., Nemitz E., Canagaratna M. R., Jayne J. T., et al. Quantitative sampling using an Aerodyne aerosol mass spectrometer. 2. Measurements of fine particulate chemical composition in two U.K. cities. J. Geophys. Res., 2003, 108(D3), AAC2/1–AAC2/15.

    Google Scholar 

  4. Alves C, Carvalho A., and Pio C. Mass balance of organic carbon fractions in atmospheric aerosols. J. Geophys. Res., 2002, 107(D21), ICC7/1–ICC7/9.

    Article  Google Scholar 

  5. Andreae M. O., Fishman J., and Lindesay J. The Southern Tropical Regional Experiment (STARE): Transport and Atmospheric chemistry near the Equator-Atlantic (TRACE-A) and Southern African Fire-Atmosphere Research Initiative (SAFARI): An introduction. J. Geophys. Res., 1996, 101(D19), 23,519–23,520.

    Google Scholar 

  6. Angstrom A. Techniques of determining turbidity of the atmosphere. Tellus, 1961, 13, 214.

    Article  Google Scholar 

  7. Ansmann A., Wandinger U., Wiedensohler A., and Leiterer U. Lindenberg Aerosol Characterization Experiment 1998 (LACE-98): Overview. J. Geophys. Res., 2002, 107(D21), LAC1/1–LAC1/12.

    Article  Google Scholar 

  8. Arnott W. P., Moosrmüller H., Sheridan P. J., Ogren J. A., Raspet R., Slaton W. V., Hand J. L., Kreidenweis S. M., and Collett J. L., Jr. Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity. J. Geophys. Res., 2003, 108(D1), 15/1–15/11.

    Article  Google Scholar 

  9. Arshinov M. Yu. and Belan B. D. The diurnal change of the fine aerosol concentration. Optics of the Atmos. and Ocean, 2000, 13(11), 983–990.

    Google Scholar 

  10. Barth M. C. and Church A. T. Regional and global distributions and lifetime of sulfate aerosols from Mexico City and southeast China. J. Geophys. Res., 1999, 104(D23), 30231–30240.

    Article  Google Scholar 

  11. Barth M. C, Rasch P. J., Kiehl J. T., Benkovitz C. M., and Schwartz S. E. Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry. J. Geophys. Res., 2000, 105(D1), 1387–1416.

    Article  Google Scholar 

  12. Bates T. S., Huebert B. J., Gras J. L., Criffiths F. B., and Durkee P. A. International Global Atmospheric Chemistry (IGAC) Project’s First Aerosol Characterization Experiment (ACE-1): Overview. J. Geophys. Res., 1998, 103(D13), 16297–16318.

    Article  Google Scholar 

  13. Baumgardner D., Raga G., Peralta O., Rosas I., Castro T., Kuhlbusch T., John A., and Petzold A. Diagnosing black carbon trends in large urban areas using carbon monoxide measurements. J. Geophys. Res., 2002, 107(D21), ICC4/1–ICC4/9.

    Article  Google Scholar 

  14. Blanchard P., Brook J. R., and Brazal P. Chemical characterization of the organic fraction of atmospheric aerosol at two sites in Ontario, Canada. J. Geophys. Res., 2003, 108(D21), ICC10/1–ICC10/8.

    Google Scholar 

  15. Bobylev L. P., Kondratyev K. Ya., and Johannessen O. M. (eds) Arctic Environment Variability in the Context of Global Change. Springer-Praxis, Chichester, UK, 2003, 471 pp.

    Google Scholar 

  16. Bokoye A. I., Royer A., O’Neill N. T., and McArthur L. J. B. A North American Arctic aerosol climatology using ground-based sunphotometry. Arctic, 2002, 55(3), 215–228.

    Google Scholar 

  17. Bravy B., Vasiliev G., Agroskin V., and Papin V. Recognition of composition and of microphysical characteristics of aerosol clouds in multi-frequency sounding with DF laser based lidar system. Proc. of the International Society for Optical Engineering, 2002, 4882, 394–399.

    Google Scholar 

  18. Bundke U., Hnel G., Horvath H., Kaller W., Seidl S., Wex H., Wiedensohler A., Wiegner M., and Freudenthaler V. Aerosol optical properties during the Lindenberg Aerosol Characterization Experiment (LACE-98). J. Geophys. Res., 2002, 107(D21), LAC5/1–LAC5/15.

    Article  Google Scholar 

  19. Busch B., Kandler K., Schütz L., and Neusüss C. Hygroscopic properties and water-soluble volume fraction of atmospheric particles in the diameter range from 50 nm to 3.8 urn during LACE-98. J. Geophys. Res., 2002, 108(D21), LAC2/1–LAC2/11.

    Google Scholar 

  20. Butler A. J., Andrew M. S., and Russel A. G. Daily sampling of PM25 in Atlanta: Results of the first year of the Assessment of Spatial Aerosol Composition in Atlanta study. J. Geophys. Res., 2003, 108(D7), SOS3/1–SOS3/11.

    Article  Google Scholar 

  21. Buzoriuz G., Rannik U., Makela J. M., Keronen P., Vesala T., and Kulmala M. Vertical aerosol fluxes measured by the eddy covariance method and deposition of nucleation mode particles above a Scots pine forest in southern Finland. J. Geophys. Res., 2000, 105(D15), 19905–19916.

    Article  Google Scholar 

  22. Cappellato R., Peters N. E., and Meyers T. P. Above-ground sulfur cycling in adjacent coniferous and decideous forest and watershed sulfur retention in the Georgia Piedmont, USA. Water, Air, and Soil Pollut., 1998, 103(1–4), 151–171.

    Article  Google Scholar 

  23. Carrico C. M., Bergin M. H., Xu J., Baumann K., and Maring H. Urban aerosol radiative properties: Measurements during the 1999 Atlanta Supersite Experiment. J. Geophys. Res., 2003, 108(D7), SOS10/1–SOS10/17.

    Article  Google Scholar 

  24. Chow J. C. and Watson J. G. PM2.5 carbonate concentrations at regionally representative Interagency Monitoring of Protected Visual Environment sites. J. Geophys. Res., 2002, 107(D21), ICC6/1–ICC6/9.

    Article  Google Scholar 

  25. Clement C. F., Ford I. J., Twohy C. H., Weinheimer A., and Campos T. Particle production in the outflow of a midlatitude storm. J. Geophys. Res., 2002, 107(D21), AAC5/1–AAC5/9.

    Article  Google Scholar 

  26. De Leeuw G., Gonzalez C. R., Kusmierczyk-Michulec J., Decae R., and Veefkind P. Retrieval of aerosol optical depth from satellite measurements using single and dual view algorithms. Proc. of the International Society for Optical Engineering, 2002, 4882, 275–283.

    Google Scholar 

  27. De Tomasi F. and Perrone M. R. Lidar measurements of tropospheric water vapor and aerosol profiles over southeastern Italy. J. Geophys. Res., 2002, 107(D21), AAC14/1–14/12.

    Google Scholar 

  28. Ebert M., Weinbinch S., Rausch A., Gorzawski G., Hoffmann P., Wex H., and Helas G. Complex refractive index of aerosols during LACE-98 as derived from the analysis of individual particles. J. Geophys. Res., 2002, 107(D21), LAC3/1–LAC3/15.

    Article  Google Scholar 

  29. Ellrod G. P., Connell B. H., and Hillger D. W. Improved detection of airborne volcanic ash using multi-spectral infrared satellite data. J. Geophys. Res., 2003, 108(D12), AAC6/1–AAC6/13.

    Article  Google Scholar 

  30. Feingold G. and Morley B. Aerosol hydroscopic properties as measured by lidar and comparison with in situ measurements. J. Geophys. Res., 2003, 108(D11), AACl/l–AACl/11.

    Article  Google Scholar 

  31. Formenti P., Reiner T., Sprung D., Andreae M. O., Wendisch M., Wex H., Kindred D., Dewey K., Kent J., Tzortziou M., et al. STAARTE-MED 1998 summer airborne measurements over the Aegean Sea. 1. Aerosol particles and trace gases. J. Geophys. Res., 2002, 107(D21), AAC1/1–AAC1/15.

    Google Scholar 

  32. Formenti P., Boucher O., Reiner T., Sprung D., Andreae M. O., Wendisch M., Wex H., Kindred D., Tzortziou M., Vasaras A., et al. STAARTE-MED 1998 summer airborne measurements over the Aegean Sea. 2. Aerosol scattering and absorption, and radiative calculations. J. Geophys. Res., 2002, 107(D21), AAC2/1–AAC2/14.

    Google Scholar 

  33. Fussen D., Vanhellemont F., and Bingen C. Synthesis inverse mapping method applied to the retrieval of aerosol size distributions from extinction measurements. J. Geophys. Res., 2003, 108(D15), AACl/l–AACl/10.

    Article  Google Scholar 

  34. Gasso S. and Hegg D. A. On the retrieval of columnar aerosol mass and CCN concentration by MODIS. J. Geophys. Res., 2003, 108(D1), 6/1–6/25.

    Google Scholar 

  35. Gong S. L., Barrie L. A., Blanchet J.-P., von Salzen K., Lohmann U., Lesing G., Spacek L., Zhang L. M., Girard E., Lin H., et al. Canadian Aerosol Module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models. 1. Module development. J. Geophys. Res., 2003, 108(D1), 3/1–3/16.

    Article  Google Scholar 

  36. Gong S. L. and Barrie L. A. Simulating the impact of sea salt on global NSS sulphate aerosol. J. Geophys. Res., 2003, 108(D16), AAC4/1–AAC4/18.

    Google Scholar 

  37. Gorchakov G. I. and Shukurov K. A. Fluctuations of the sub-micron aerosol concentration under convection conditions. Physics of the Atmos. and Ocean, 2003, 39(1), 85–97 [in Russian].

    Google Scholar 

  38. Graham B., Mayol-Bracero O., Guyon P., Roberts G. C, Decesary S., Facchini M. C, Artaxo P., Maenhaut W., Kö11 P., et al. Water-soluble organic compounds in biomass burning aerosols over Amazonia. 1. Characterization by NMR and GC-MS. J. Geophys. Res., 2003, 108(D15), LBA14/1–LBA14/16.

    Google Scholar 

  39. Grigoryev A. A. and Kondratyev K. Ya. Ecological Disasters. Sci. Centre, RAS, St Petersburg, 2001, 350 pp. [in Russian].

    Google Scholar 

  40. Guelle W., Balkanski Y. J., Schuiz M., Marticorena B., Bergametti G., Moulin C, Arimoto R., and Perry K. D. Modeling the atmospheric distribution of mineral aerosol: Comparison with ground measurements and satellite observations for yearly and synoptic timescales over the North Atlantic. J. Geophys. Res., 2000, 105(D2), 1997–2012.

    Article  Google Scholar 

  41. Gullu G. H., Olmez I., Aygun S., and Tuncel B. Atmospheric trace element concentrations over the eastern Mediterranean Sea: Factors affecting temporal variability. J. Geophys. Res., 1998, 103(D17), 21943–21954.

    Article  Google Scholar 

  42. Guyon P., Graham B., Roberts G. C, Mayol-Bracero O. L., Maenhaut W., Artaxo P., and Andreae M. O. In-canopy gradients, composition, sources, and optical properties of aerosol over the Amazon forest. J. Geophys. Res., 2003, 108(D18), AAC9/1–AAC9/16.

    Article  Google Scholar 

  43. Hara K., Yamagata S., Yamanouchi T., Sato K., Herber A., Iwasaka Y., Nagatani M., and Nakata H. Mixing states of individual aerosol particles in spring Arctic troposphere during ASTAR 2000 campaign. J.Geophys. Res., 2003, 108(D7), AAC2/1–AAC2/12.

    Article  Google Scholar 

  44. Henning S., Weingartner E., Schwikowski M., Gäggeler H. W., Gehrig R., Hinz K.-P., Trimborn A., Spengler B., and Baltenspreger U. Seasonal variation of water-soluble ions of the aerosol at the high-alpine site Jungfrauhoch (3580 m asl). J. Geophys. Res., 2003, 108(D1), 8/1–8/10.

    Article  Google Scholar 

  45. Holzer-Popp T., Schroedter M., and Gesell G. Retrieving aerosol optical depth and type in the boundary layer over land and ocean from simultaneous GOME spectrometer and ATSR-2 radiometer measurements. 1. Method description. J. Geophys. Res., 2002, 107(D21), AAC16/1–AAC16/17.

    Article  Google Scholar 

  46. Ilyin A. P., Gromov A. A., and Popenko E. M. Toxotropic metal aerosols of the surface layer. Optics of the Atmos. and Ocean, 2000, 13(11), 991–995.

    Google Scholar 

  47. Ivlev L. S., Leyva Contreras A., and Muhlia Velaskes A. On the role of photochemistry in processes of the atmospheric aerosol pollution. In: L. S. Ivlev (ed.), Natural and Anthropogenic Aerosols. St Petersburg State University Press, St Petersburg, 1998, 85 pp. [in Russian].

    Google Scholar 

  48. Ivlev L. S., Korostina O. M., Leyva A., and Muhlia A. Modelling the optical characteristics of surface aerosols in the region of Mexico City for dry and wet seasons. Optics of the Atmos. and Ocean, 1993, 6(9), 1144–1150.

    Google Scholar 

  49. Ivlev L. S., Vasilyev A. V., Belan B. D., Panchenko M. V., and Terpugova S. A. Optico-microphysical models of the urban aerosols. In: L. S. Ivlev (ed.), Natural and Anthropogenic Aerosols, St Petersburg State University Press, St Petersburg, 2001, pp. 161–170 [in Russian].

    Google Scholar 

  50. Ivlev L. S., Zhukov V. M., Korostina O. M., Leiva Contreras A., Mulia Velaskes A., and Bravo-Cabrera J. L. Specified optical characteristics of aerosol in the surface layer of Mexico City. Optics of the Atmos. and Ocean, 1994, 7(9), 1202–1206.

    Google Scholar 

  51. Ivlev L. S. and Dovgaliuk Yu. A. Physics of the Atmospheric Aerosol Systems. St Petersburg State University Press, St Petersburg, 2000, 258 pp. [in Russian].

    Google Scholar 

  52. Jimenez J. L., Jayne J. T., Shi Q., Kolb C. E., Worsnop D. R., Yourshaw I., Seinfeld J. H., Flagan R. C, Zhang X., Smith K. A., et al. Ambient aerosol sampling using the Aerodyne Aerosol Mass-Spectrometer. J. Geophys. Res., 2003, 108(D7), SO13/1–SOS 13/13.

    Article  Google Scholar 

  53. Johansen A. M., Siefert R. L., and Hoffmann M. R. Chemical composition of aerosols collected over the tropical North Atlantic Ocean. J. Geophys. Res., 2000, 105(D12), 15277–15312.

    Article  Google Scholar 

  54. Khutorova O. G., Teptin G. M., and Latypov A. F. An empirical model of interaction of aerosol and chemical admixtures under the urban conditions. Optics of the Atmos. and Ocean, 2000, 13(6-7), 678–680.

    Google Scholar 

  55. Kimura T., Kordo K., Kumagai H., Kuroiwa H., Ishida C, Oki R., Kyze A., Suzuki M., Okamoto H., Imasu R., et al. Earth CARE-Earth Clouds, Aerosols and Radiation Explorer: Its objectives and Japanese sensor designs. Proc. of the International Society for Optical Engineering, 2002, 4882, 510–519.

    Google Scholar 

  56. Kiss G., Varga B., Galamos I., and Ganszky I. Characterization of water-soluble organic matter isolated from atmospheric fine aerosol. J. Geophys. Res., 2002, 107(D21), ICC1/1–ICC1/8.

    Article  Google Scholar 

  57. Kondratyev K. Ya., Moskalenko N. I., and Pozdniakov D. V. Atmospheric Aerosol. Gidrometeoizdat, Leningrad, 1983, 224 pp. [in Russian].

    Google Scholar 

  58. Kondratyev K. Ya. Biogenic aerosol in the atmosphere. Optics of the Atmos. and Ocean, 2001, 14(3), 171–179.

    Google Scholar 

  59. Kondratyev K. Ya., Krapivin V. F., and Phillips G. V. Problems of the High-Latitude Environmental Pollution. Sci. Centre, RAS, St Petersburg, 2002, 280 pp. [in Russian].

    Google Scholar 

  60. Kondratyev K. Ya. The Arctic environment. 1. Conceptual aspects. Proc. Russian Geogr. Soc, 2002, 134(5), 1–10 [in Russian].

    Google Scholar 

  61. Kondratyev K. Ya. The Arctic environment. 2. Prospects of studies. Proc. Russian Geogr. Soc, 2002, 135(6), 1–7 [in Russian].

    Google Scholar 

  62. Kondratyev K. Ya. Aerosol as a climate forming atmospheric component. 1 Physical properties and chemical composition. Optics of the Atmos. and Ocean, 2002, 15(2), 123–146.

    Google Scholar 

  63. Kondratyev K. Ya. and Grigoryev Al. A. Environmental Disasters: Natural and Anthropogenic. Springer-Praxis, Chichester, UK, 2002, 484 pp.

    Google Scholar 

  64. Kondratyev K. Ya. Global climate change and the Kyoto Protocol. Idöjárás, 106(2), 14413–14422.

    Google Scholar 

  65. Kondratyev K. Ya. Priorities of global climatology. Proc. Russian Geogr. Soc, 2004, 136(2), 1025 [in Russian].

    Google Scholar 

  66. Kondratyev K. Ya. From nano-to global scales: Properties, formation processes and consequences of the impact of atmospheric aerosol. 2. Field observational experiment. America, Western Europe, and high latitudes. Optics of the Atmos. and Ocean, 2005, 17(9), 715–741.

    Google Scholar 

  67. Koponen I. K., Virkkula A., Hillamo R., Kerminen V.-M., and Külmälä M. Number size distributions and concentrations of the continental summer aerosols in Queen Maud Land, Antarctica. J. Geophys. Res., 2003, 108(D18), AAC8/1–AAC8/10.

    Article  Google Scholar 

  68. Kozlov A. S., Ankilov A. N., Baklanov A. M., Vlasenko A. K., Eremenko S. I., and Malyshkin S. B. Study of mechanical processes of submicron aerosol formation. Optics of the Atmos. and Ocean, 2000, 13(6–7), 664–666.

    Google Scholar 

  69. Krejci R., Ström J., de Reus M., Hoor P., Williams J., Fischeer H., and Hansson H.-C. Evolution of aerosol properties over the rain forest in Surinam, South America, observed from aircraft during the LBA-CLAIRE-98 experiment. J. Geophys. Res., 2003, 108(D18), AAC1/1–AAC1/17.

    Article  Google Scholar 

  70. Kubátova A., Vermeylen R., Claes M., Cafmeyer J., and Maenhaut W. Organic compounds in urban aerosols from Gent, Belgium: Characterization, sources, and seasonal differences. J. Geophys. Res., 2002, 107(D21), ICC5/1–ICC5/12.

    Google Scholar 

  71. Kudriashov V. I. An analysis of the elemental composition of atmospheric aerosols using physical methods. In: L. S. Ivlev (ed.), Physics and Chemistry of Atmospheric Aerosols. St Petersburg State Univ. Press, St Petersburg, 1997, pp. 97–130 [in Russian].

    Google Scholar 

  72. Lavoue D., Liousse C, Cachier H., Stocks B., and Goldammer J. G. Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. J. Geophys. Res., 2000, 105(D22), 26871–26890.

    Article  Google Scholar 

  73. Levy R. C, Remer L. A., Tanré D., Kaufman Y. J., Ichoku C, Holben B. N., Livingston J. M., Russel P. B., and Mering H. Evaluation of the Moderate-Resolution Imaging Spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE. J. Geophys. Res., 2003, 108(D19), PRD10/1–PRD10/13.

    Article  Google Scholar 

  74. Leyva A., Muhlia A., Valdes M., Hoblen B., Smirnov A., and Ivlev L. Photometric and meteorological characteristics of the Mexico City aerosol. Preliminary results. In: L. S. Ivlev (ed.), Proc. Second Int. Conf. ‘Natural and anthropogenic aerosols’, St Petersburg, Petrodvorets, 27 September–1 October 1999. St Peterburg State Univ. Press, St Petersburg, 2000, pp. 117–120.

    Google Scholar 

  75. Lim H.-J., Turpin B. J., Edgerton E., Hering S. V., Allen G., Maring H., and Solomon P. Semicontinuous aerosol carbon measurements: Comparison of Atlanta Supersite measurements. J. Geophys. Res., 2003, 108(D7), SOS7/1–SOS7/12.

    Article  Google Scholar 

  76. Liu D.-Y., Wenzel R. J., and Prather K. A. Aerosol time-of-flight mass spectrometry during the Atlanta Supersite Experiment. 1. Measurements. J. Geophys. Res., 2003, 108(D7), SOS14/1–SOS14/16.

    Article  Google Scholar 

  77. Maring H., Savoie D. L., Izaguirre M. A., McCormick C, Arimoto R., Prospero J. M., and Pilinis C. Aerosol physical and optical properties and their relationship to aerosol composition in the free troposphere at Izafia, Tenerife, Canary Islands, during July 1995. J. Geophys. Res., 2000, 105(D11), 14677–14700.

    Article  Google Scholar 

  78. Mayol-Bracero O. L., Guyon P., Graham B., Roberts G., Andreae M. O., Decesary S., Facchini M. P., Fuzzi S., and Artaxo P. Water-soluble organic compounds in biomass burning aerosols over Amazonia. 2. Apportionment of the chemical composition and importance of the polyacidic fraction. J. Geophys. Res., 2003, 108(D20), LBA59/1–LBA59/15.

    Google Scholar 

  79. McArthur L. J. B., Halliwell D. H., Niebergall O. J., O’Neill N. T., Slusser J. R., and Wehrli C. Field comparison of network Sun photometers. J. Geophys. Res., 2003, 108(D1), 1/1–1/18.

    Article  Google Scholar 

  80. Meszaros E. Fundamentals of Atmospheric Aerosol Chemistry. Akademiai Kiado, Budapest, 1999, 308 pp.

    Google Scholar 

  81. Meszaros E. and Molnar A. A brief history of aerosol research in Hungary. Idöjárás, 2001, 105(2), 63–80.

    Google Scholar 

  82. Middlebrook A. M., Murphy D. M., Lee S.-H., Thomson D. S., Prather K. A., Wenzel R. J., Liu D.-Y., Phares D. J., Rhoads K. P., Wexler A. S., et al. A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project. J. Geophys. Res., 2003, 108(D7), SOS12/1–SOS12/13.

    Article  Google Scholar 

  83. Mikhailov V. V. and Voitov V. P. An improved model of the universal spectrometer to study the shortwave radiation fields in the atmosphere. Problems of Atmospheric Physics, 1966, 4, 120–128 [in Russian].

    Google Scholar 

  84. Minikin A., Petzold A., Ström J., Krejci R., Seifert M., van Velthoven P., Schlager H., and Schumann U. Aircraft observations of the upper tropospheric fine particle aerosols in the Northern and Southern Hemispheres at midlatitudes. Geophys. Res. Lett., 2003, 30(10), 10/1–10/4.

    Article  Google Scholar 

  85. Müller D., Ansmann A., Wagner F., Franke K., and Althausen D. European pollution outbreaks during ACE-2: Microphysical particle properties and single-scattering albedo inferred from multi-wavelength lidar observations. J. Geophys. Res., 2002, 107(D15), AAC3/1–AAC3/11.

    Article  Google Scholar 

  86. Narukawa M., Kawamura K., Anlauf K. G., and Barrie L. A. Fine and coarse modes of dicarboxylic acids in the Arctic aerosols collected during the Polar Sunrise Experiment 1997. J. Geophys. Res., 2003, 108(D18), ACH3/1–ACH3/9.

    Article  Google Scholar 

  87. Neusüss C, Wex H., Birmili W., Wiedensohler A., Koziar C, Busch B., Brüggemann E., Gnauk T., Ebert M., and Covert D. S. Characterization and parameterization of atmospheric particle number, mass, and chemical-size distributions in central Europe during LACE 98 and MINT. J. Geophys. Res., 2002, 107(D21), LAC9/1–LAC9/13.

    Google Scholar 

  88. Obolkin V. A., Potemkin V. L., and Khodzher T. V. Comparative data on aerosol chemistry in the continental and arctic regions of the Eastern Siberia. Optics of the Atmos. and Ocean, 1998, 11(6), 632–635.

    Google Scholar 

  89. O’Neill N. T., Eck T. F., Smirnov A., Holben B. N., and Thulasiraman S. Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res., 2003, 108(D17), AAC8/1–AAC8/15.

    Google Scholar 

  90. Penenko V. V. and Panchenko M. V. Interdisciplinary studies of transport and trans formation of admixtures in the atmosphere: Preliminary results and perspectives. Optics of the Atmos. and Ocean, 2000, 13(6–7), 694–700.

    Google Scholar 

  91. Petzold A., Fiebig M., Flentje H., Keil A., Leiterer U., Schröder F., Stifter A., Wendisch M., and Wendling P. Vertical variability of aerosol properties observed at a continental site during the Lindenberg Aerosol Characterization Experiment (LACE-98). J. Geophys. Res., 2002, 107(D21), LAC10/1–LAC10/18.

    Article  Google Scholar 

  92. Phares D. J., Rhoads K. P., Johnston M. V., and Wexler A. S. Size-resolved ultrafine particle composition analysis. 2. Houston. J. Geophys. Res., 2003, 108(D7), SOS8/1–SOS8/14.

    Article  Google Scholar 

  93. Pirjola L., Laaksonen A., and Kulmala M. Sulfate aerosol formation in the Arctic Boundary Layer. J. Geophys. Res., 1998, 103(D7), 8309–8321.

    Article  Google Scholar 

  94. Pitts M., Hansen G., and Lucker P. An airborne A-band spectrometer for remote sensing of aerosol and cloud properties. Proc. of the International Society for Optical Engineering, 2002, 4882, 353–362.

    Google Scholar 

  95. Polissar A. V., Hopke P. K., Pantero P., Malm W. C, and Sisler J. F. Atmospheric aerosol over Alaska. 2. Elemental composition and sources. J. Geophys. Res., 1998, 103(D15), 19045–19057.

    Article  Google Scholar 

  96. Polissar A. V., Hopke P. K., Malm W. C, and Sisler J. F. Atmospheric aerosol over Alaska. 1. Spatial and seasonal variability. J. Geophys. Res., 1998, 103(15), 19035–19044.

    Article  Google Scholar 

  97. Raj P. E., Devara P. C. S., Pandithural G., Maneskumar R. S., and Dani K. K. Some atmospheric aerosol characteristics as determined from laser angular scattering measurements at a continental urban station. Atmosfera, 2004, 17(1), 39–52.

    Google Scholar 

  98. Randall C. E., Bevilacqua R. M., Lumple J. D., Hoppel K. W., Rusch D. W., and Shettle E. P. Comparison of Polar Ozone and Aerosol Measurement (POAM) II and Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol measurements from 1994 to 1996. J. Geophys. Res., 2000, 105(D3), 3929–3942.

    Article  Google Scholar 

  99. Rankin A. M. and Wolff E. W. A year-long record of size-segregated aerosol composition at Halley, Antarctica. J. Geophys. Res., 2003, 108(D24), AAC9/1–AAC9/12.

    Article  Google Scholar 

  100. Rannik Ü., Aalto P., Keronen P., Vesala T., and Külmälä M. Interpretation of aerosol particle fluxes over a pine forest: Dry deposition and random errors. J. Geophys. Res., 2003, 108(D17), AAC3/1–AAC3/11.

    Article  Google Scholar 

  101. Rhoads K. P., Phares D. J., Wexler A. S., and Johnston M. V. Size-resolved ultrafine particle composition analysis. 1. Atlanta. J. Geophys. Res., 2003, 108(D7), SOS6/1–SOS6/13.

    Article  Google Scholar 

  102. Romankevich E. A. and Vetrov A. A. The Carbon Cycle in the Arctic Seas of Russia. Nauka Publ., Moscow, 2001, 303 pp. [in Russian].

    Google Scholar 

  103. Savarino J. and Legrand M. High northern latitude forest fires and vegetation emissions over the last millenium inferred from the chemistry of a central Greenland ice core. J. Geophys. Res., 1998, 103(D7), 8267–8279.

    Article  Google Scholar 

  104. Schröder F., Kärcher B., Fiebig M., and Petzold A. Aerosol states in the free troposphere at northern midlatitudes. J. Geophys. Res., 2002, 107(D21), LAC8/1–LAC8/8.

    Article  Google Scholar 

  105. Sellegri K., Laj P., Peron F., Dupuy R., Legrand M., Peunkert S., Putraud J.-P., Cachier H., and Ghermandi G. Mass balance of free tropospheric aerosol at the Puy de Dôme (France) in winter. J. Geophys. Res., 2003, 108(D11), AAC2/1–AAC2/17.

    Google Scholar 

  106. Sicard M., Rocadenbosch F., Lopez A. M., Comerón A., Rodriguez A., Muñoz C, and Garcia-Vizcaino D. Characterization of aerosol backscatter-to-extinction ratio from multi-wavelength and multi-angular lidar profiles. Proc. of the International Society for Optical Engineering, 2002, 4882, 442–450.

    Google Scholar 

  107. Smirnov A., Holben B. N., Dubovik O., Frouin R., Eck T. F., and Slutsker I. Maritime component in aerosol optical models derived from Aerosol Robotic Network data. J. Geophys. Res., 2003, 108(D1), 14/1–14/11.

    Article  Google Scholar 

  108. Solomon P. A., Cowling E. B., Weber R. Preface to special section: Southern Oxidants Study 1999 Atlanta Supersite Project (SOS3). J. Geophys. Res., 2003, 108(D7), SOS 0/1.

    Google Scholar 

  109. Solomon P. A., Chameides W., Weber R., Middlebrook A., Kiang C. S., Russel A. G., Butler A., Turpin B., Mikel D., Scheffe R., et al. Overview of the 1999 Atlanta Supersite Project. J. Geophys. Res., 2003, 108(D7), SOS1/1–SOS1/24.

    Google Scholar 

  110. Solomon P., Baumann K., Edgerton E., Tanner E., Eatough D., Modey W., Maring H., Savoie D., Natarajan S., Meyer M. B., et al. Comparison of integrated samplers for mass and composition during the 1999 Atlanta Supersite project. J. Geophys. Res., 2003, 108(D7), SOS11/1–SOS11/26.

    Google Scholar 

  111. Teinila K., Kerminen V.-M., and Hillamo R. A study of size-segregated aerosol chemistry in the Antarctic atmosphere. J. Geophys. Res., 2000, 105(D3), 3893–3905.

    Article  Google Scholar 

  112. Trimborn A., Hinz K.-P., and Spengler B. Online analysis of atmospheric particles with a transportable laser mass spectrometer during LACE-98. J. Geophys. Res., 2002, 107(D21), LAC13/1–LAC13/10.

    Article  Google Scholar 

  113. Vasilyev A. V., Melnikova I. N., Poberovskaya L. N., Tovstenko I. A. Spectral bright ness coefficients for natural formations in the range 0.35–0.85μm. 1. Instrumentation and processing technique of measurement results. Studies of the Earth from Space, 1997, 3, 25–31.

    Google Scholar 

  114. Vasilyev A. V., Melnikova I. N., Poberovskaya L. N., and Tovstenko I. A. Spectral brightness coefficients for natural formations in the range 0.35–00.85 μm. II. Water surface. Studies of the Earth from Space, 1997, 4, 43–51.

    Google Scholar 

  115. Vasilyev A. V., Melnikova I. N., Poberovskaya L. N., and Tovstenko I. A. Spectral brightness coefficients for natural formations in the range 0.35–0.85 μm. III. Land surface. Studies of the Earth from Space, 1997, 5, 25–32.

    Google Scholar 

  116. Vasilyev A. V. and Ivlev L. S. An optical statistical aerosol model of the atmosphere for the Ladoga Lake region. Optics of the Atmos. and Ocean, 2000, 13(2), 198–203.

    Google Scholar 

  117. Vasilyev O. B., Grishechkin V. S., and Kovalenko A. P. The spectral information-measurement system to study the shortwave radiation field in the atmosphere from surface and aircraft. In K. Ya. Kondratyev and V. A. Melentyev (eds), Complex Remote Sensing of Lakes. Nauka Publ., Leningrad, 1987, pp. 225–228 [in Russian].

    Google Scholar 

  118. Vasilyev S. L., Gudoshnikov Yu. N., and Ivlev L. S. Active impacts on atmospheric processes. Natural and anthropogenic aerosols. In: L. S. Ivlev (ed.), Proc. Second Int. Conf. ‘Natural and anthropogenic aerosols’, St Petersburg, Petrodvorets, 27 September–1 October 1999. St Petersburg State Univ. Press, Institute of Chemistry, St Petersburg, 2000, pp. 251–258 [in Russian].

    Google Scholar 

  119. Vasilyev S. L., Ivlev L. S., Krylov G. N. Complex monitoring and control of the environment. Proc. of the Third Int. Conference ‘Natural and anthropogenic aerosols’, St Petersburg, 2001, pp. 449–456 [in Russian].

    Google Scholar 

  120. Vautard R., Martin D., Beekmann M., Drobinski P., Friedrich R., Jaubertie A., Kley D., Lattuati M., Moral P., Neininger B., et al. Paris emission inventory diagnostics from ESQUIF airborne measurements and a chemistry transport model. J. Geophys. Res., 2003, 108(D17), ESQ7/1–ESQ7/21.

    Google Scholar 

  121. Von Hoyningen-Huene W., Freitag M., and Burrows J. B. Retrieval of aerosol optical thickness over land surfaces from top-of-atmosphere radiance. J. Geophys. Res., 2003, 108(D9), AAC2/1–AAC2/20.

    Google Scholar 

  122. Wahiin P. One year’s continuous aerosol sampling at Summit in Central Greenland. In: E. W. Woiffand and R. C. Baler (eds), Chemical Exchange Between the Atmosphere and Polar Snow (NATO AST Series 1. 1996, vol. 43). Springer-Verlag, Berlin, pp. 131–143.

    Google Scholar 

  123. Wandinger U., Müller D., Böckmann C, Althausen D., Matthias V., Rösenberg J., Weiß V., Fiebig M., Wendisch M., Stohl A., et al. Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multi-wavelength lidar and aircraft measurements. J. Geophys. Res., 2002, 107(D21), LAC7/1–LAC7/20.

    Article  Google Scholar 

  124. Weaver C. J., Joiner J., and Ginoux P. Mineral aerosol contamination of TIROS Operational Vertical Sounder (TOVS) temperature and moisture retrievals. J. Geophys. Res., 2003, 108(D8), AAC5/1–AAC5/15.

    Article  Google Scholar 

  125. Weber R., Orsini D., Duan Y., Baumann K., Kiang C. S., Chameides W., Lee Y. N., Brechtel F., Klotz P., Jongejan P., et al. Intercomparison of near real time monitors of PM2.5 nitrate and sulfate at the U.S. Environmental Protection Agency Atlanta Supersite. J. Geophys. Res., 2003, 108(D7), SOS9/1–SOS9/13.

    Article  Google Scholar 

  126. Wenzel R. J., Liu D.-Y., Edgerton E. S., and Prather K. A. Aerosol time-of-flight mass spectrometry during the Atlanta Supersite Experiment. 2. Scaling procedure. J. Geophys. Res., 2003, 108(D7), SOS15/1–SOS15/8.

    Article  Google Scholar 

  127. Wetzel M. A., Shaw G. E., Slusser J. R., Borys R. D., and Cahill C. F. Physical, chemical, and ultraviolet radiative characteristics of aerosol in central Alaska. J. Geophys. Res., 2003, 108(D14), AAC9/1–AAC9/16.

    Article  Google Scholar 

  128. Wex H., Neusüss C, Wendisch M., Stratmann F., Koziar C, Keil A., and Wiedensohler A. Particle scattering, backscattering, and absorption coefficients: An in situ closure and sensitivity study. J. Geophys. Res., 2002, 107(D21), LAC4/1–LAC4/18.

    Article  Google Scholar 

  129. Wolff E. W. and Cachier H. Concentrations and seasonal cycle of black carbon in aerosol at a coastal Antarctic station. J. Geophys. Res., 1998, 103(D9), 11033–11042.

    Article  Google Scholar 

  130. Yi Q., Box M. A., and Jupp D. L. B. Inversion of multi-angle sky radiance measurements for the retrieval of atmospheric optical properties. 1. Algorithm. J. Geophys. Res., 2002, 107(D22), AAC10/1–AAC10/10.

    Google Scholar 

  131. Yi Q., Jupp D. L. B., and Box M. A. Inversion of multi-angle sky radiance measurements for the retrieval of atmospheric optical properties. 2. Application. J. Geophys. Res., 2002, 107(D22), AAC11/1–AAC11/9.

    Google Scholar 

  132. Zakharenko V. S. and Moseichuk A. N. Chemical reactions in the troposphere. Optics of the Atmos. and Ocean, 2003, 16(5–6), 447–453.

    Google Scholar 

  133. Zhang J., Chameides W. L., Weber R., Cass G., Orsini D., Edgerton E., Jongejan P., and Slanina J. An evaluation of the thermodynamic equilibrium assumption for fine particulate composition: Nitrate and ammonium during the 1999 Atlanta Supersite Experiment. J. Geophys. Res., 2003, 108(D7), SOS2/1–SOS2/11.

    Google Scholar 

  134. Zhao T. X.-P., Laszlo I., Dubovik O., Holben B. N., Sapper J., Tanré D., and Pietras C. A study of the effect of non-spherical dust particles on the AVHRR aerosol optical thickness retrievals. Geophys. Res. Lett., 2003, 30(3), 50/1–50/4.

    Google Scholar 

  135. Zhao T. X.-P., Laszlo I., Holben B. N., Pietras C, Voss R. J. Validation of two-channel VIRS retrievals of aerosol optical thickness over ocean and quantitative evaluation of the impact from potential subpixel cloud contamination and surface wind effect. J. Geophys. Res., 2003, 108(D3), AAC7/1–AAC7/12.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

(2006). Field observational experiments in America and western Europe. In: Atmospheric Aerosol Properties. Springer Praxis Books. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-37698-4_2

Download citation

Publish with us

Policies and ethics