Skip to main content

Evidence for Climate Change on Mars

  • Chapter

Part of the book series: Springer Praxis Books ((GEOPHYS))

Abstract

One of the most striking differences between the present day climates of Earth and Mars is the ubiquitous and abundant presence of liquid water on Earth and the extremely dry atmosphere and surface of Mars. Features on the surface of Mars, discovered by early spacecraft missions in the 1970s and apparently caused by flowing water on the surface in the past, have lead to much speculation concerning the early Martian climate and the possibility that the planet was once relatively warm and wet. Such speculation is fuelled by the search for life on Mars, either in the present or as a fossil record. Until recent missions, however, there has been little direct evidence for the existence of large water deposits, other than in the form of ice, largely around the northern polar cap. During the past 2 years, however, NASA’s Mars Odyssey and ESA’s Mars Express spacecraft have discovered evidence for considerable amounts of ice lying at relatively shallow depths in the Martian regolith. The NASA Mars Rovers have also found considerable in situ evidence for ancient water in the nearby rocks and landscape.

It still seems unclear, despite various attempts to model the ancient Martian climate, whether Mars had a sustained warm, wet climate, with liquid water flowing on the surface, or whether it has remained mostly in a frozen state, interrupted by occasional melting events for short periods of time. Climate change on more recent timescales (104–106 years BP) has perhaps been less dramatic, but more amenable to systematic modelling. There is strong evidence of changes in Mars’ climate on these timescales in the polar-layered deposits, associated with the obliquity cycle, and Mars GCMs have started to make progress in modelling climate change associated with varying astronomical parameters. We will briefly review such studies as well as the limited observational evidence for more dramatic climate change since the early epochs of the planet’s history.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, D. G., 2001. An Introduction to Atmospheric Physics. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Armstrong, J. C., Leovy, C. B., 2005. Long term wind erosion on Mars. Icarus 176, 57–74. doi:10.1016/j.icarus.2005.01.005.

    Article  ADS  Google Scholar 

  • Bibring, J.-P., Langevin, Y., Poulet, F., Gendrin, A., Gondet, B., Berthé, M., Soufflot, A., Drossart, P., Combes, M., Bellucci, G., Moroz, V., Mangold, N., Schmitt, B., The OMEGA Team, 2004. Perennial water ice identified in the south polar cap of Mars. Nature 428, 627–630.

    Article  ADS  Google Scholar 

  • Böttger, H. M., Lewis, S. R., Read, P. L., Forget, F., 2005. The effects of the Martian regolith on GCM water cycle simulations. Icarus, in press.

    Google Scholar 

  • Byrne, S., Ingersoll, A. P., 2003. A sublimation model for martian south polar ice features. Science 299, 1051–1053.

    Article  ADS  Google Scholar 

  • Forget, F., Pierrehumbert, R. T., 1997. Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 1273–1276.

    Article  ADS  Google Scholar 

  • Haberle, R. M., 1998. Early Mars climate models. J. Geophys. Res. 103(E12), 28467–28479.

    Article  ADS  Google Scholar 

  • Haberle, R. M., McKay, C. P., Schaeffer, J., Cabrol, N. A., Grin, E. A., Zent, A. P., 2001. On the possibility of liquid water on present-day Mars. J. Geophys. Res. 106(E10), 23317–23326.

    Article  ADS  Google Scholar 

  • Haberle, R. M., Murphy, J. R., Schaeffer, J., 2003. Orbital change experiments with a Mars general circulation model. Icarus 161, 66–89.

    Article  ADS  Google Scholar 

  • Hauber, E., van Gasselt, S., Ivanov, B., Werner, S., Head, J.W., Neukum, G., Jaumann, R., Greeley, R., Mitchell, K. L., Müller, P., The HRSC Co-Investigator Team, 2005. Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars. Nature 434, 356–361.

    Article  ADS  Google Scholar 

  • Head, J.W., Mustard, J. F., Kreslavsky, M. A., Millikan, R. E., Marchant, D. R., 2003. Recent ice ages on Mars. Nature 426, 797–802.

    Article  ADS  Google Scholar 

  • Head, J. W., Neukum, G., Jaumann, R., Hiesinger, H., Hauber, E., Carr, M., Masson, P., Foing, B., Hoffmann, H., Kreslavsky, M., Werner, S., Milkovich, S., van Gasselt, S., The HRSC Co-Investigator Team, 2005. Tropical to midlatitude snow and ice accumulation, flow and glaciation on Mars. Nature 434, 346–350.

    Article  ADS  Google Scholar 

  • Joshi, M. M., Haberle, R. M., Barnes, J. R., Murphy, J. R., Schaeffer, J., 1997. Low-level jets in the NASA Ames Mars general circulation model. J. Geophys. Res. 102(E3), 6511–6523.

    Article  ADS  Google Scholar 

  • Joshi, M. M., Lewis, S. R., Read, P. L., Catling, D. C., 1995. Western boundary currents in the martian atmosphere: Numerical simulations and observational evidence. J. Geophys. Res. 100(E3), 5485–5500.

    Article  ADS  Google Scholar 

  • Kargel, J. S., 2004. Mars: A Warmer, Wetter Planet. Springer-Verlag, Berlin. ISBN: 1-85233-565-8.

    Google Scholar 

  • Kasting, J. F., 1991. CO2 condensation and the climate of early mars. Icarus 94, 1–13.

    Article  ADS  Google Scholar 

  • Laskar, J., Correia, A. C. M., Gastineau, M., Joutel, F., Levrard, B., Robutel, P., 2004. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364. doi:10.1016/j.icarus.2004.04.005.

    Article  ADS  Google Scholar 

  • Laskar, J., Levrard, B., Mustard, J. F., 2002. Orbital forcing of the martian polar layered deposits. Nature 419, 375–377.

    Article  ADS  Google Scholar 

  • Lowell, P., 1895. Mars. Houghton Mifflin, Boston.

    Google Scholar 

  • Lowell, P., 1906. Mars and its Canals. Macmillan, New York.

    Google Scholar 

  • Lowell, P., 1908. Mars and the Abode of Life. Macmillan, New York.

    Google Scholar 

  • Milkovich, M., Head, J.W., 2004. Characterization and comparison of layered deposit sequences around the north polar cap of Mars: Identification of a fundamental climatic signal. Lunar Planet Sci. XXXV, abstr. 1342.

    Google Scholar 

  • Mischna, M., Richardson, M. I., Wilson, R. J., McCleese, D. J., 2003. On the orbital forcing of Martian water and CO2 cycles: A general circulation model study with simplified volatile schemes. J. Geophys. Res. 108(E6), 5062, doi:10.1029/2003JE002051.

    Article  Google Scholar 

  • Murray, J. B., Muller, J.-P., Neukum, G., Werner, S. C., van Gasselt, S., Hauber, E., Markiewicz, W. J., Head III, J. W., Foing, B. H., Page, D., Mitchell, K. L., Portyankina, G., The HRSC Co-Investigator Team, 2005. Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars’ equator. Nature 434, 352–355.

    Article  ADS  Google Scholar 

  • Neukum, G., Jaumann, R., Hoffmann, H., Hauber, E., Basilevsky, A. T., Ivanov, B. A., Werner, S. C., van Gasselt, S., Murray, J. B., McCord, T., The HRSC Co-Investigator Team, 2004. Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature 432, 971–979.

    Article  ADS  Google Scholar 

  • Newman, C. E., Lewis, S. R., Read, P. L., 2005. The atmospheric circulation and dust activity in different orbital epochs on Mars. Icarus 174, 135–160.

    Article  ADS  Google Scholar 

  • Pathare, A. V., Paige, D. A., 2005. The effects of Martian orbital variations upon the sublimation and relaxation of north polar troughs and scarps. Icarus 174, 419–443. doi:10.1016/j.icarus.2004.10.030.

    Article  ADS  Google Scholar 

  • Picardi, G., Biccari, D., Seu, R., Marinangeli, L., Johnson, W. T. K., Jordan, R. L., Plaut, J., Safaenili, A., Gurnett, D. A., Ori, G. G., Orosei, R., Calabrese, D., Zampolini, E., 2004. Performance and surface scattering models for the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS). Plan. Space Sci. 52, 149–156.

    Article  ADS  Google Scholar 

  • Pollack, J. B., Kasting, J. F., Richardson, S. M., Poliakoff, K., 1987. The case for a wet, warm climate on early Mars. Icarus 71, 203–224.

    Article  ADS  Google Scholar 

  • Postawko, S. E., Kuhn, W. R., 1986. Effect of greenhouse gases (CO2, H2O, 2) on Martian paleoclimates. J. Geophys. Res. 91(suppl.), D431-D438. SO

    Google Scholar 

  • Rafkin, S. C. R., Michaels, T. I., 2003. Meteorological predictions for 2003 Mars Exploration Rover high-priority landing sites. J. Geophys. Res. 108, doi:10.1029/2002JE002027.

    Google Scholar 

  • Read, P. L., Lewis, S. R., 2004. The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet. Springer-Verlag, Berlin. ISBN: 3-540-40743-X.

    Google Scholar 

  • Richardson, M. I., Wilson, R. J., 2002a. Investigation of the nature and stability of the martian sasonal water cycle with a general circulation model. J. Geophys. Res. 107(E5), doi:10.1029/2001JE001536.

    Google Scholar 

  • Richardson, M. I., Wilson, R. J., 2002b. A topographically forced asymmetry in the Martian circulation and climate. Nature 416, 298–301.

    Article  ADS  Google Scholar 

  • Segschneider, J., Grieger, B., Keller, H. U., Lunkeit, F., Kirk, E., Fraedrich, K., Rodin, A., Greve, R., 2005. Response of the intermediate complexity Mars Climate Simulator to different obliquity angles. Plan. Space Sci. 53, 659–670.

    Article  ADS  Google Scholar 

  • Seu, R., Biccari, D., Orosei, R., Lorenzoni, L. V., Phillips, R. J., Marinangeli, L., Picardi, G., Masdea, A., Zampolini, E., 2004. SHARAD: The MRO 2005 shallow radar. Plan. Space Sci. 52, 157–166.

    Article  ADS  Google Scholar 

  • Smith, M. D., 2002. The annual cycle ofwater vapor on Mars as observed by the Thermal Emission Spectrometer. J. Geophys. Res. 107(E11), 5115, doi:10.1029/2001JE001522.

    Article  ADS  Google Scholar 

  • Smith, M. D., 2004. Interannual variability in TES atmopsheric observations of Mars during 1999–2003. Icarus 167, 148–165.

    Article  ADS  Google Scholar 

  • Smith, M. D., Conrath, B. J., Pearl, J. C., Christensen, P. R., 2002. Thermal Emission Spectrometer observations of martian planet-encircling dust storm 2001a. Icarus 157, 259–263.

    Article  ADS  Google Scholar 

  • Squyres, S. W., Arvidson, R. E., Bell III, J. F., Brückner, J., and W. Calvin, N. A. C., Carr, M. H., Christensen, P. R., Clarke, B. C., Crumpler, L., Des Marais, D. J., d’Uston, C., Economou, T., Farmer, J., Farrand, W., Folkner, W., Golombek, M., Gorevan, S., Grant, J. A., Greeley, R., Grotzinger, J., Haskin, L., Herkenhoff, K. E., Hviid, S., Johnson, J., Klinigelhöfer, G., Knoll, A., Landis, G., Lemmon, M., Li, R., Madsen, M. B., Malin, M. C., McLennan, S. M., McSween, H. Y., Ming, D. W., Moersch, J., Morris, R. V., Parker, T., Rice Jr., J. W., Richter, L., Rieder, R., Sims, M., Smith, M., Smith, P., Soderblom, L. A., Sullivan, R., Wänke, H., Wdowiak, T., Wolff, M., Yen, A., 2004a. The Spirit Rover’s Athena science investigation at Gusev Crater, Mars. Science 305, 794–799.

    Article  ADS  Google Scholar 

  • Squyres, S. W., Arvidson, R. E., Bell III, J. F., Brückner, J., and W. Calvin, N. A. C., Carr, M. H., Christensen, P. R., Clarke, B. C., Crumpler, L., Des Marais, D. J., d’Uston, C., Economou, T., Farmer, J., Farrand, W., Folkner, W., Golombek, M., Gorevan, S., Grant, J. A., Greeley, R., Grotzinger, J., Haskin, L., Herkenhoff, K. E., Hviid, S., Johnson, J., Klinigelhöfer, G., Knoll, A. H., Landis, G., Lemmon, M., Li, R., Madsen, M. B., Malin, M. C., McLennan, S. M., McSween, H. Y., Ming, D. W., Moersch, J., Morris, R. V., Parker, T., Rice Jr., J. W., Richter, L., Rieder, R., Sims, M., Smith, M., Smith, P., Soderblom, L. A., Sullivan, R., Wänke, H., Wdowiak, T., Wolff, M., Yen, A., 2004b. The Opportunity Rover’s Athena science investigation at Meridiani Planum, Mars. Science 306, 1698–1703.

    Article  ADS  Google Scholar 

  • Takahashi, Y. O., Fujiwara, H., Fukunishi, H., Odaka, M., Hayashi, Y.-Y., Watanabe, S., 2003. Topographically induced north-south asymmetry of the meridional circulation in the martian atmosphere. J. Geophys. Res. 108(E3), 5018, doi:10.1029/2001JE001638.

    Article  Google Scholar 

  • Titus, T. N., Kieffer, H. H., Christensen, P. R., 2003. Exposed water ice discovered near the south pole of Mars. Science 299, 1048–1051.

    Article  ADS  Google Scholar 

  • Touma, J., Wisdom, J., 1993. The chaotic obliquity of Mars. Science 259, 1294–1297.

    Article  ADS  Google Scholar 

  • Yung, Y. L., Nair, H., Gerstell, M. F., 1997. CO2 greenhouse in the early Martian atmosphere: SO2 inhibits condensation. Icarus 130, 222–224.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Praxis Publishing Ltd

About this chapter

Cite this chapter

Lewis, S.R., Read, P.L. (2006). Evidence for Climate Change on Mars. In: Blondel, P., Mason, J.W. (eds) Solar System Update. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-37683-6_5

Download citation

Publish with us

Policies and ethics