Skip to main content

The Solar Atmosphere and Space Weather

  • Chapter
Solar System Update

Part of the book series: Springer Praxis Books ((GEOPHYS))

Abstract

First ideas about possible physical influences of the Sun on Earth other than by electromagnetic (EM) radiation were scientifically discussed more seriously after Richard Carrington’s famous observation of a spectacular white-light flare in 1859 and the subsequent conclusion that this flash of EM radiation was connected with the origin of strong perturbations of the Earth’s outer magnetic field, commonly referred to as geomagnetic storms, which were recorded about 24 hours after the solar flare. Tentatively significant correlations of the number of geomagnetic storms and aurorae with the varying number of sunspots seen on the visible solar disk were found in the long-term with respect to the roughly 11-year periodicity of the solar activity cycle. Although theories of sporadic solar eruptions were postulated soon after the Carrington observations, the physical mechanism of the transfer of energy from the Sun to the Earth remained unknown. Early in the 20th century Chapman and Ferraro proposed the concept of huge clouds of charged particles emitted by the Sun as the triggers of geomagnetic storms. Based on the inference of the existence of a solar magnetic field, magnetized plasma clouds were subsequently introduced. Eugene Parker derived theoretical evidence for a continuous stream of ionized particles, the solar wind, leading to continuous convection of the Sun’s magnetic field into interplanetary space. The existence of the solar wind was confirmed soon after the launch of the first satellites. Since then the Sun is known to be a permanent source of particles filling interplanetary space. However, it was still thought that the Sun’s outer atmosphere, the solar corona, is a static rather than a dynamic object, undergoing only long-term structural changes in phase with the Sun’s activity cycle. This view completely changed after space borne telescopes provided extended series of solar images in the EUV and soft X-ray range of the EM spectrum, invisible to ground-based observers. The remote-sensing observations undertaken by Yohkoh, followed by multi-wavelength movies from SoHO (Solar Heliospheric Observatory) and high resolution EUV imaging by TRACE (Transition Region and Coronal Explorer) have revealed to date that the Sun’s atmosphere is highly dynamic and never at rest. Solar eruptions have been tracked into space in unprecedented detail. In combination with near-Earth satellites, their interplanetary and geo-space effects could be investigated in depth, having provided the roots for space weather forecasts. This chapter summarizes the discoveries about the origin and evolution of solar storms and their space weather effects, providing a comprehensive picture of the most important links in the Sun-Earth system. It finally provides an outlook to future research in the field of space weather.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, J.H., D.C. Wilkinson, 1992, Solar-Terrestrial Activity Affecting Systems in Space and on Earth, Solar-Terrestrial Predictions-IV: Proceedings of a Workshop at Ottawa, Canada May 18–22, 1992, J. Hruska, M.A. Shea, D.F. Smart, G. Heckman (Eds.), 75.

    Google Scholar 

  • Allen, J.H., H. Sauer, L. Frank, P. Reiff, 1989, Effects of the March 1989 Solar Activity, EOS 70–46, 1486–1488.

    Google Scholar 

  • Aschwanden, M., 2004, Physics of the solar corona — An introduction, 842 pp, Springer-Praxis, Chichester, UK.

    Google Scholar 

  • Balogh, A., R.G. Marsden, E.J. Smith, 2001, The Heliosphere near solar minimum — The Ulysses perspective, 411 pp, Springer-Praxis, Chichester, UK.

    Google Scholar 

  • Balogh, A., V. Bothmer (CO-Chairs), N. Cooker, R.J. Forsyth, G. Gloeckler, A. Hewish, M. Hilchenbach, R. Kallenbach, B. Klecker, J.A. Linker, E. Lucek, G. Mann, E. Marsch, A. Posner, I.G. Richardson, J.M. Schmidt, M. Scholer, Y.-M. Wang, and R.F. Wimmer-Schweingruber (Participants), M.R. Aellig, P. Bochsler, S. Hefti and Z. Miki? (Contributing Authors not Participating in the Workshop), 1999, The Solar Origin of Corotating Interaction Regions and Their Formation in the Inner Heliosphere (Report of Working Group 1), Space Sci. Rev., 89, 141–178.

    Article  ADS  Google Scholar 

  • Bartels, J., 1932, Terrestrial-magnetic activity and its relations to solar phenomena, Terr. Magn. Atmosph. Electr. 37, 1–52.

    Article  MATH  Google Scholar 

  • Bartels, J., J. Veldkamp, 1949, Geomagnetic and Solar Data — International Data on Magnetic Disturbances, J. Geophys. Res. 54, 295–299.

    Article  ADS  Google Scholar 

  • Biermann L., 1951, Kometschweife und solare Korpuskularstrahlung, Z. Astrophys., 29, 274.

    ADS  Google Scholar 

  • Becquerel, H., 1880, Mémoire sur la polarisation atmosphérique et l’influences du magnétisme terrestre sur l’atmosphère, Bern, Dibner.

    Google Scholar 

  • Bohlin, J.D., N.R. Sheeley Jr., 1978, Extreme Ultraviolet Observations Of Coronal Holes: II. Association of Holes with Solar Magnetic Fields and a Model for their Formation during the Solar Cycle, Solar Physics 56, 125 151.

    Article  ADS  Google Scholar 

  • Bothmer, V., 1996, Solar Corona, Solar Wind Structure and Solar Particle Events, Proc. of ESA Workshop on Space Weather Nov. 1998, ESA WPP-155, ISSN 1022-6656, 117.

    Google Scholar 

  • Bothmer, V., A. Posner, H. Kunow, R. Müller-Mellin, B. Heber, M. Pick, B.J. Thompson, J.-P. Delaboudinière, G.E. Brueckner, R.A. Howard, D.J. Michels, C.St. Cyr, A. Szabo, H.S. Hudson, G. Mann, H.-T. Classen, 1997, Solar energetic particle events and coronal mass ejections: New insights from SOHO, Proc. 31st ESLAB Symposium, ESA SP-415, 207.

    Google Scholar 

  • Bothmer, V., 1999, Magnetic Field Structure and Topology Within CMEs in the Solar Wind, Solar Wind 9 Conf. Proc., AIP, 119–126.

    Google Scholar 

  • Bothmer, V., 2003, Sources of magnetic helicity over the solar cycle, Proc. ISCS 2003 Symposium,’ solar Variability as an Input to the Earth’s Environment’, ESA SP-535, 419.

    Google Scholar 

  • Bothmer, V., 2004, The Solar and Interplanetary Causes of Space Storms in Solar Cycle 23, IEEE Transactions on Plasma Science, 32, 4.

    Article  Google Scholar 

  • Bothmer, V. and Schwenn, R., 1994, Eruptive prominences as sources of magnetic clouds in the solar wind, Space Sci. Rev., 70, 215–220.

    Article  ADS  Google Scholar 

  • Bothmer, V., Schwenn, R., 1996, Signatures of fast CMEs in interplanetary space, Adv. Space Res., 17, 319–322.

    Article  ADS  Google Scholar 

  • Bothmer, V., and Schwenn, R., 1998, The Structure and Origin of Magnetic Clouds in the Solar Wind, Annales Geophysicae, 1–24.

    Google Scholar 

  • Bothmer, V., and Rust, D.M., 1997, The field configuration of magnetic clouds and the solar cycle, AGU Geophys. Monogr., 99, 139–146.

    Google Scholar 

  • Brueckner, G.E., J.-P. Delaboudiniere, R.A. Howard, S.E. Paswaters, O.C. St. Cyr, R. Schwenn, P. Lamy, G.M. Simnett, B. Thompson, D. Wang, 1998, Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997, Geophys. Res. Lett., 25, 3019.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., 1975, Interaction with the earth, Space Sci. Rev., 17, 327.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., K.W. Behannon, L.W. Klein, 1987, Compound streams, magnetic clouds, and major geomagnetic storms, J. Geophys. Res. 92, 5725–5734.

    Article  ADS  Google Scholar 

  • Burlaga, L., Fitzenreiter, R., Lepping, R., Ogilvie, K., Szabo, A., Lazarus, A., Steinberg, J., Gloeckler, G., Howard, R., Michels, D., Farrugia, C., Lin, R.P., and Larson, D.E., 1998, A magnetic cloud containing prominence material: January 1997, J. Geophys. Res., 103, 277–285.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., J.H. King, 1979, Intense Interplanetary Magnetic Fields Observed by Geocentric Spacecraft During 1963–1975, J. Geophys. Res., 84, 6633.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Klein, L., Sheeley, N.R. Jr., Michels, D.J., Howard, R.A., Koomen, M.J., Schwenn, R., Rosenbauer, H., 1982, A magnetic cloud and a coronal mass ejection, J. Geophys. Res., 9, 1317–1320.

    Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., and Schwenn, R., 1981, Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP 8 observations, J. Geophys. Res., 86, 6673–6684.

    Article  ADS  Google Scholar 

  • Canfield, R.C., H.S. Hudson, D.E. McKenzie, 1999, Sigmoidal morphology and eruptive solar activity, Geophys. Res. Lett., Vol. 26,6, 627.

    Article  ADS  Google Scholar 

  • Carrington R.C., 1860, Description of a singular appearance in the Sun on September 1, 1859, Monthly Not. Royal Astron. Soc., 20, 13.

    ADS  Google Scholar 

  • Chapman, S., Ferraro V.A., 1930, A new theory of magnetic storms, Nature, 126.

    Google Scholar 

  • de Mairan J.J. d’Ortous, 1733, Traite Physique et Historique de l’Aurore Boreale.

    Google Scholar 

  • Chao, J.K., R.P. Lepping, 1974, A correlative study of ssc’s, interplanetary shocks, and solar activity, J. Geophys. res., 79,13, 1799.

    Article  ADS  Google Scholar 

  • Chen, J., R.A. Santoro, J. Krall, R.A. Howard, R. Duffin, J.D. Moses, G.E. Brueckner, J.A. Darnell, J.T. Burkepile, 2000 Magnetic geometry and dynamics of the fast coronal mass ejection of 1997 September 9, Astrophys. J., 533, 481.

    Article  ADS  Google Scholar 

  • Cremades, H., Bothmer, V., 2004, On the three-dimensional configuration of coronal mass ejections, Astron. & Astrophys., 422, 307.

    Article  ADS  Google Scholar 

  • Cremades, H., V. Bothmer, D. Tripathi, Properties of Structured Coronal Mass Ejections in Solar Cycle 23, in press.

    Google Scholar 

  • Crooker, N.U., G.L. Siscoe, 1986, The effects of the solar wind on the terrestrial environment, in Physics of the Sun, Vol. III, D. Reidel Publ. Company, 193.

    ADS  Google Scholar 

  • Crooker, N.U., J.T. Gosling (CO-Chairs), V. Bothmer, R.J. Forsyth, P.R. Gazis, A. Hewish, T.S: Horbury, D.S. Intriligator, J.R. Jokipii, J. Kóta, A.J. Lazarus, M.A. Lee, E. Lucek, E. Marsch, A. Posner, I.G. Richardson, E.C. Roelof, J.M. Schmidt, G.L. Siscoe, B.T. Tsurutani, R.F. Wimmer-Schweingruber (Participants), 1999, CIR Morphology, Turbulence, Discontinuities, and Energetic Particles (Report of Working Group 2), Space Sci. Rev., 89, 179.

    Article  ADS  Google Scholar 

  • Daglis, I.A., Ed., 2004, Effects of Space Weather on Technology Infrastructure, NATO Science Series, II. Mathematics, Physics and Chemistry, 176.

    Google Scholar 

  • Dal Lago, A.; Vieira, L. E. A.; Echer, E.; Gonzalez, W. D.; de Gonzalez, A. L. C.; Guarnieri, F. L.; Schuch, N. J.; Schwenn, R., 2004, Comparison Between Halo cme Expansion Speeds Observed on the Sun, the Related Shock Transit Speeds to Earth and Corresponding Ejecta Speeds at 1 AU, Solar Physics, 222,2, 323.

    Article  ADS  Google Scholar 

  • de Mairan, J.J.’Ortous, 1733, Traite Physique et Historique de l’Aurore Boreale.

    Google Scholar 

  • Dere, K., J. Wang, Y. Yan, Eds., 2004, Coronal and stellar mass ejections, Proc. IAU, Symposium 226, Beijing.

    Google Scholar 

  • Dessler A.J., Parker E.N., 1959, Hydromagnetic theory of magnetic storms, J. Geophys. Res., 64, 2239.

    Article  ADS  Google Scholar 

  • Fabricius, J., 1611, De Maculis in Sole observatis, et apparente earum cum Sole conversione, Narratio, Witebergae.

    Google Scholar 

  • Feynman, J., S.F. Martin, 1995, The initiation of coronal mass ejections by newly emerging magnetic flux, J. Geophys. res., 100, 3355

    Article  ADS  Google Scholar 

  • Fitzgerald G.F., 1892, Sunspots and magnetic storms, The Electrician, 30, 48.

    Google Scholar 

  • Fleck, B., Domino, V., Poland, A., 1995, The SOHO mission, Sol. Phys., 162, 1, Kluwer Academic Publ.

    Article  ADS  Google Scholar 

  • Fleck, B., Svetska, Z., Eds., 1997, The first results from SOHO, Sol. Phys., 170, 1; 172, 2, Kluwer Academic Publ.

    Google Scholar 

  • Forbes, T.G., 2000, A review on the genesis of coronal mass ejections, J. Geophys. res., 105, 23153.

    Article  ADS  Google Scholar 

  • Gauss C.F., 1839, Allgemeine Theorie des Erdmagnetismus in “Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838.

    Google Scholar 

  • Gibson, S.E., B.C. Low, 2000, Three-dimensional and twisted: An MHD interpretation of on-disk observational characteristics of coronal mass ejections, J. Geophys. Res., 105,A8, 18187.

    Article  ADS  Google Scholar 

  • Gold, T., 1955, Discussion on shockwaves and rarefied gases, in Gas Dynamics of Cosmic Clouds, North Holland Publ., Amsterdam, 103.

    Google Scholar 

  • Gold, T., 1959, J. Geophys. Res., 64, 1219.

    Article  ADS  Google Scholar 

  • Goldstein, E., 1880, Eine neue Form elektrischer Abstossung — A new kind of electrical repulsion, Berlin, Springer.

    Google Scholar 

  • Gonzalez, W.D., 1990, A unified view of solar wind-magnetosphere coupling functions, Planetary and Space Science, 38,5, 627.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., B.T. Tsurutani, 1987, Criteria of interplanetary parameters causing intense magnetic storms (Dst < −100 nT), Planet. Space Sci., 35, 1101.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., A.L.C. Gonzalez, 1990, Dual-Peak Solar Cycle Distribution of Intense Geomagnetic Storms, Planet. Space Sci., 38, 181.

    Article  ADS  Google Scholar 

  • Goodrich, C.C., J.G. Lyon, M. Wiltberger, R.E. Lopez, K. Papadopoulos, 1998, An overview of the impact of the January 10–11, 1997 magnetic cloud on the magnetosphere via global MHD simulation, Geophys. res. Lett., 25,14, 2537.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Yashiro, S., Nunes, S., Howard, R. A., 2003, Coronal mass ejection activity during solar cycle 23, in ESA SP-535: Solar Variability as an Input to the Earth’s Environment, 403–414.

    Google Scholar 

  • Gosling, J.T., Coronal mass ejections and magnetic flux ropes in interplanetary space, 1990, in Physics of Magnetic Flux Ropes, Eds., E.R. Priest, L.C. Lee, C.T. Russell, AGU Geophys. Monogr. 58, 343.

    Google Scholar 

  • Gosling, J.T., 1993, Coronal mass ejections: The link between solar and geomagnetic activity, Phys. Fluids, B5, 2638.

    ADS  Google Scholar 

  • Gosling, J.T., 1993, The solar flare myth, J. Geophys. Res., 98, A11, 18937.

    Article  ADS  Google Scholar 

  • Gosling, J.T., J.R. Asbridge, S.J. Bame, A.J. Hundhausen, I.B. Strong, 1968, Satellite observations of interplanetary shock waves, J. Geophys. Res., 73, 43.

    Article  ADS  Google Scholar 

  • Gosling, J.T., S.J. Bame, D.J. McComas, J.L. Phillips, 1990, Coronal Mass Ejections And Large Geomagnetic Storms, Geophys. Res. Lett. 17, 901–904.

    Article  ADS  Google Scholar 

  • Gosling, J.T., D.J. McComas, 1987, Field line draping about fast coronal mass ejecta: A source of strong out-of-the-ecliptic interplanetary magnetic fields, Geophys. Res. Lett. 14, 355–358.

    Article  ADS  Google Scholar 

  • Gosling, J.T., V. Pizzo, 1999, Formation and evolution of corotating interaction regions and their three-dimensional structure, Space Sci. Rev., 89,1–2, 21.

    Article  ADS  Google Scholar 

  • Gringauz K.I., Bezrukikh V.V., Ozerov V.D., 1961, Results of measurements of the concentration of positive ions in the atmosphere, using ion traps mounted on the Third Soviet Earth Satellite, In Artificial Earth Satellites, ed. L.V. Kurnosova, New York, Plenum Press, 6, 77.

    Google Scholar 

  • Hale, G.E., 1908, On the probable existence of a magnetic field in sunspots, Astrophys. J., 28, 315.

    Article  ADS  Google Scholar 

  • Hale, G.E., Ellermann, F., Nicholson, S.B., Joy, A.H., 1919, The Magnetic Polarity of Sunspots, Astrophys. J., 49, 153.

    Article  ADS  Google Scholar 

  • Harrison, R.A., 1986, Solar coronal mass ejections and flares, Astron. & Astrophys., 162, 283.

    ADS  Google Scholar 

  • Henke, T., J. Woch, U. Mall, S. Livi, B. Wilken, R. Schwenn, G. Gloeckler, R. von Steiger, R.J. Forsyth, A. Balogh, 1998, Differences in the O+7/O+6 ratio of magnetic cloud and noncloud coronal mass ejections, Geophys. Res. Lett., 25, 3465.

    Article  ADS  Google Scholar 

  • Henke, T., J. Woch, R. Schwenn, U. Mall, G. Gloeckler, R. von Steiger, R.J. Forsyth, A. Balogh, 2001, Ionization state and magnetic topology of coronal mass ejections, J. Geophys. Res., 106, 597.

    Article  Google Scholar 

  • Hildner, E., Gosling, J. T., MacQueen, R. M., Munro, R. H., Poland, A. I., Ross, C. L., 1976, Frequency of coronal transients and solar activity, Sol. Phys., 48, 127–135.

    Article  ADS  Google Scholar 

  • Hiorter, O.P., 1747, Om Magnetnalens atskillige andreingar, Kongle Swen Wetenskaps Acad Handlingar, 27.

    Google Scholar 

  • Hoeksema, J.T., 1984, Structure and evolution of the large scale solar and heliospheric magnetic fields, Phd Thesis, Stanford University, CA, USA.

    Google Scholar 

  • Howard, R.A., A.F. Thernisien, A. Vourlidas, C. Marque, N. Patel, Modeling of CMEs for the STEREO Mission, Proc. Solar Wind 11, in press.

    Google Scholar 

  • Howard, R. A., et al., 1997, Observations of CMEs from SOHO/LASCO, 10, in Coronal Mass Ejections, Geophysical Monograph 99, 17.

    MathSciNet  Google Scholar 

  • Hundhausen, A.J., C.B. Sawyer, L. House, R.M.E. Illing, W.J. Wagner, 1984, Coronal mass ejections observed during the Solar Maximum Mission: Latitude distribution and rate of occurrence, J. Geophys. Res., 89, 2639.

    Article  ADS  Google Scholar 

  • Isenberg, 1999, American Institute of Physics, 1-56396-865-7/99.

    Google Scholar 

  • Kivelson, M.G., C.T. Russell, Eds., 1995, Introduction to Space Physics, Cambridge Univ. Press, ISBN 0521457149.

    Google Scholar 

  • Klassen, A., H. Aurass, G. Mann, et al., 2000, AASS, 141, 357.

    ADS  Google Scholar 

  • Klein, L.W., and Burlaga, L.F., 1982, Interplanetary Magnetic Clouds at 1 AU, J. Geophys. Res., 87, 613–624.

    Article  ADS  Google Scholar 

  • Koomen, M., Howard, R., Hansen, R., Hansen, S., 1974, The Coronal Transient of 16 June 1972, Sol. Phys., 34, 447.

    Article  ADS  Google Scholar 

  • Koskinen, H., E. Tanskanen, R. Pirjola, A. Pulkinnen, C. Dyer, D. Rodgers, P. Cannon, J.-C. Mandeville, D. Boscher, 2000, SpaceWeather Effects Catalogue, Finish Meteorological Institute, ISSN 0782-6079.

    Google Scholar 

  • Lang, K., The sun from space, A&A Library, Springer.

    Google Scholar 

  • Lanzerotti, L.J., C. Breglia, D.W. Maurer, G.K. Johnson, C.G. Maclennan, 1998, Studies of spacecraft charging on a geosynchronous telecommunication satellite, Adv. Space Res., 22, 1, 79.

    Article  Google Scholar 

  • Lanzerotti, L.J., D.J. Thomson, C.G. Maclennan, Wireless at High Altitudes — Environmental Effects on Space-Based Assets, Bell Labs Technical Journal, 5, Summer 1997.

    Google Scholar 

  • Lepping, R.P., D.B. Berdichevsky, C.C. Wu, 2003 Sun-Earth electrodynamics: The solar wind connection, Recent Res. Devel. Astrophys., 1, 139.

    Google Scholar 

  • Lepping, R. P., Berdichevsky, D. B., Burlaga, L. F., Lazarus, A. J., Kasper, J., Desch, M. D., Wu, C.-C., Reames, D. V., Singer, H. J., Smith, C.W., and Ackerson, K. L., 2001, The bastille day magnetic cloud and upstrem shocks: near-earth interplanetary observations, Solar Physics, 204, 287–305.

    Article  ADS  Google Scholar 

  • Lepping, R.P., Jones, J.A., and Burlaga, L.F., 1991, Magnetic field structure of interplanetary magnetic clouds at 1 au, J. Geophys. Res., 95, 11,957–11,965.

    ADS  Google Scholar 

  • Lepping, R.P., et al., 1995, The Wind magnetic field investigation: The Global Geospace Mission, Space Sci. Rev., 71, 207–229.

    Article  ADS  Google Scholar 

  • Lepping, R. P., Berdichevsky, D. B., Burlaga, L. F., Lazarus, A. J., Kasper, J., Desch, M. D., Wu, C.-C., Reames, D. V., Singer, H. J., Smith, C. W., Ackerson, K. L., 2001, The bastille day magnetic cloud and upstrem shocks: near-earth interplanetary observations, Solar Physics, 204, 287.

    Article  ADS  Google Scholar 

  • Lites, B.W., B.C. Low, 1997, Flux emergence and prominences: A new scenario for 3-Dimensional field geometry based on observations with the advanced stokes polarimeter, Sola Phys., 174, 91.

    Article  ADS  Google Scholar 

  • Lodge, O., 1900, Sunspots, magnetic storms, comet tails, atmospheric electricity, and aurorae, Electrician 46, 249.

    Google Scholar 

  • Low, B.C., 2001, Coronal Mass Ejections, magnetic flux ropes, and solar magnetism, J. Geophys. res., 106, A11, 25141.

    Article  Google Scholar 

  • Low, B.C., 2001, Coronal mass ejections, magnetic flux ropes, and solar magnetism, J. Geophys. Res., 106, 25141–25163.

    Article  ADS  Google Scholar 

  • Low, B.C., M. Zhang, 2004, Global Magnetic-Field Reversal in the Corona, in AGU Geophys. Monogr., 141, 51.

    Google Scholar 

  • Lyot, B., 1939, The study of the solar corona and prominences without eclipses, George Darwin Lecture, MNRAS, 99, 580.

    MATH  Google Scholar 

  • Marsden, R.G., 2001, The 3-D heliosphere at solar maximum, reprint from Space Sci. Rev., 97, 1–4, Kluwer Academic Publ.

    ADS  Google Scholar 

  • Marubashi, K., 1986, Structure of the interplanetary magnetic clouds and their solar origins, Adv. Space Res., 6, 335–338.

    Article  ADS  Google Scholar 

  • Marubashi, K., 1997, Interplanetary Magnetic Flux Ropes and Solar Filaments, AGU Geophys. Monograph, 99, 147–156.

    Google Scholar 

  • Marubashi, K., 2002, Interplanetary Magnetic Flux Ropes, J. of the Communications Research Laboratory, 49, 3.

    Google Scholar 

  • Maunder, E.W., 1904, The great magnetic storms, 1875–1903 and their associations with sunspots, Greenwich Royal Observatory, Royal Astron. Soc., 64, 205.

    Google Scholar 

  • Mayaud, P.N., 1980, Derivation, Meaning, and Use of Geomagnetic Indices, AGU Geophysical Monograph 22, Washington D.C.

    Google Scholar 

  • McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W., 1998, Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer, Space Sci. Rev., 86, 563–612.

    Article  ADS  Google Scholar 

  • McComas, D.J., J.T. Gosling, D. Winterhalter, E.J. Smith, 1988, Interplanetary magnetic field draping about fast coronal mass ejecta in the outer heliosphere, J. Geophys. es., 93, 2519.

    Article  ADS  Google Scholar 

  • McPherron, R.L., 1979, Magnetospheric substorms, Rev. Geophys. Space Phys., 17, 657.

    Article  ADS  Google Scholar 

  • Mulligan, T., C.T. Russell, J.G. Luhmann, 1998, Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere, m Geophys. res. Lett., 25, 2959.

    Article  ADS  Google Scholar 

  • Mulligan, T., C.T. Russell, 2001 Multispaceraft modeling of the flux rope structure of interplanetary coronal mass ejections: Cylindrically symmetric versus nonsymmetric topologies, J. Geophys. Res., 106, 10581.

    Article  ADS  Google Scholar 

  • NASA, 1996, Reference Publication 1390, Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment, K.L. Bedingfield, R.D. Leach, M.B. Alexander, Eds.

    Google Scholar 

  • NASA, 1996, Foundations of solar particle event risk management, Anser, Arlington, Mission from Planet Earth Study Office, NAGW-4166.

    Google Scholar 

  • Ness, N.F., 2001, Interplanetary magnetic field dynamics, Space Storms and Space Weather Hazards, Ed. I.A. Daglis, Kluwer Academic Publ., 131.

    Google Scholar 

  • Neugebauer, M., and C.W. Snyder, 1966, Mariner 2 observations of the solar wind, 1. Average properties, j. Geophys. res., 71.

    Google Scholar 

  • Odstrcil, D., Linker, J. A., Lionello, R., Mikić, Z., Riley, P., Pizzo, V. J., & Luhmann, J.G., 2002, Merging of coronal and heliospheric numerical two-dimensional MHD models, J. Geophys. Res., 107, A12, SSH 14-1, CiteID 1493, DOI 10.1029/2002JA009334.

    Article  Google Scholar 

  • Odstrcil, D., 2003, Modeling 3D solar wind structure, Adv. Space Res., 32/4, 497.

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., et al., SWE, 1995, A comprehensive plasma instrument for the Wind spacecraft: The Global Geospace Mission, Space Sci. Rev., 71, 55–57.

    Article  ADS  Google Scholar 

  • Panasenco, O.A., et al., Solar origins of intense geomagnetic stroms in 2002 as seen by the CORONAS-F satellite, Adv. Space Res., xx.

    Google Scholar 

  • Parker, E.N., 1959, Extension of the solar corona inot interplanetary space, J. Geophys. Res., 64, 1675.

    Article  ADS  Google Scholar 

  • Parks, G.K., 2003, Physics of Space Plasmas: An INtroduction, ISBN 0813341299, Westview Press.

    Google Scholar 

  • Parker, E.N., 2001, Solar activity and classical physics, Cin. J. Astron. Astrophys., Vol. 1, 2, 99.

    Article  ADS  Google Scholar 

  • Phillips, J.L., J.T. Gosling, D.J. McComas, Coronal mass ejections and geomagnetic storms: Seasonal variations, Proc. Solar-Terrestrial Predictions Workshop, Ottawa, 1992.

    Google Scholar 

  • Prölss, G., 2004, Physik des erdnahen Weltraums — Eine Einführung, Springer, Berlin.

    MATH  Google Scholar 

  • Reames, D.V., Particle Acceleration by CME-Driven Shock Waves, Highlight Paper, 26th INt. Cosmic Ray Conf., 1999.

    Google Scholar 

  • Richardson, I.G., E.W. Cliver, H.V. Cane, Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000.

    Google Scholar 

  • Richardson, J.D., Y. Liu, C. Wang, L.F. Burlaga, 2005, ICMEs at very large distances, Adv. Space Res., xxx.

    Google Scholar 

  • Rostoker, G., 1972, Geomagnetic Indices, Reviews of Geophysics and Space Physics 10, 935.

    Article  ADS  Google Scholar 

  • Russell, C.T., 1971, Geophysical Coordinate Transformations, Cosmic Electrodynamics 2, 184.

    Google Scholar 

  • Russell, C.T., R.L. McPherron, 1973, The magnetotail and substorms, Space Sci. Rev. 15, 205.

    Article  ADS  Google Scholar 

  • Russell, C.T., R.L. McPherron, 1973, Semiannual variation of geomagnetic activity, J. Geophys. res., 78, 92.

    Article  ADS  Google Scholar 

  • Russell, C.T., T. Mulligan, B.J. Anderson, 2003, Radial variation of magnetic flux ropes: Case studies with ACE and NEAR, Solar Wind Ten: Proc. of the 10th INt. Solar Wind Conf., M. Velli, R. Bruno, F. Malara (Eds.), AIP, 121.

    Google Scholar 

  • Sabine, E., 1852, On periodic laws discoverable in the mean effects of the larger magnetic disturbances, hilos. Trans. R. Soc. London, 142, 103.

    Article  Google Scholar 

  • Schlegel, K., 2000, Wenn die Sonne verrückt spielt, Physik in unserer Zeit, 31, 5, 222.

    Article  Google Scholar 

  • Schreiber, H., 1998, On the periodic variations of geomagnetic activity indices Ap and ap, Ann. Geophys., 16, 510.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., M.L. DeRosa, 2003, Photospheric and heliospheric magnetic fields, Sol. Phys., 212, 165.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., 2001, Catastrophic cooling and high-speed downflow in quiescent solar corobnal loops observed with TRACE, Solar Physics, 198, 325.

    Article  ADS  Google Scholar 

  • Schwabe, S.H., 1844, Solar Observatins During 1843 by Heinrich Schwabe, Astron. Nachrichten, Vol. 21, 233.

    Article  ADS  Google Scholar 

  • Schwenn, R., 1990, Large-Scale Structure of the Interplanetary Medium, in Physics of the inner heliosphere, 1 Large-Scale Phenomena, Springer-Verlag, 99.

    Google Scholar 

  • Schwenn, R., E. Marsch, Eds., 1990: Physics of the Inner Heliosphere: 1 Large-Scale Phenomena, Springer, Berlin/Heidelberg.

    Google Scholar 

  • Schwenn, R., E. Marsch, Eds., 1991: Physics of the Inner Heliosphere: 2 Particles, Waves and Turbulence, Springer, Berlin/Heidelberg.

    Google Scholar 

  • Secchi, A.P., Le Soleil, Paris — Gauthier-Villars, XVI, 422, 1870.

    ADS  Google Scholar 

  • Sheeley, N.R. Jr., Howard, R.A., Koomen, M.J., Michels, D.J., Schwenn, R., Mühlhäuser, K.-H., Rosenbauer, H., 1985, Coronal mass ejections and interplanetary shocks, J. Geophys. Res., 90, 163–175.

    Article  ADS  Google Scholar 

  • Siebert, M., 1971, Maßzahlen der erdmagnetischen Aktivität, Handb. Physik 49/3 (Geophysik 3/3), 206–275, Berlin/Heidelberg/New York.

    ADS  Google Scholar 

  • Smith, C.W., L’Heureux, J., Ness, N.F., Acuna, M.H., Burlaga, L.F., Scheifele, J., 1998, The ACE magnetic field experiment, Space Sci. Rev., 86, 613.

    Article  ADS  Google Scholar 

  • Sonett, C.P., I.J. Abrahms, 1963, The distant geomagnetic field, 3, Disorder and shocks in the magnetopause, J. Geophys. Res., 68, 1233.

    Article  ADS  Google Scholar 

  • St. Cyr, O. C., Burkepile, J. T., Hundhausen, A. J., Lecinski, A. R., 1999, A comparison of ground-based and spacecraft observations of coronal mass ejections from 1980–1989, J. Geophys. Res., 104, 12493.

    Article  ADS  Google Scholar 

  • St. Cyr, O., R.A. Howard, N.R. Sheeley Jr., S.P. Plunkett, D.J. Michels, S.E. Paswaters, M.J. Koomen, G.M. Simnett, B.J. Thompson, J.B. Gurman, R. Schwenn, D.F. Webb, E. Hildner, P.L. Lamy, 2000, Properties of coronal mass ejections: SOHO, LASCO observations from January 1996 to June 1998, J Geophys. Res., 105, 18169.

    Article  ADS  Google Scholar 

  • Seneca, L.A., 4 B.C.-65 A.C., Naturales quaestiones.

    Google Scholar 

  • Subramanian, P., K.P. Dere, 2001, Source Regions of Coronal Mass Ejections, Astrophys. J., 561, 372.

    Article  ADS  Google Scholar 

  • Tang, F., B.T. Tsurutani, W.D. Gonzalez, S.I. Akasofu, E.J. Smith, 1989, Solar sources of interplanetary southward Bz events responsible for major geomagnetic storms (1978–1979), J. Geophys. res., 94, 3535.

    Article  ADS  Google Scholar 

  • Thompson, B.J., 2001, Moreton waves, in Murdin 2000, xx.

    Google Scholar 

  • Tsurutani, B.T., 2000, Solar/Interplanetary plasma phenomena causing geomagnetic activity at Earth, Proc. of the Int. School of Physics “Enrico Fermi”, Course CXLII, B. Coppi, A. Ferrari and E. Sindoni (Eds.), IOS Press, Amsterdam.

    Google Scholar 

  • Tsurutani, B.T., 2001, The interplanetary causes of magnetic storms, substorms and geomagnetic quiet, Space Storms and Space Weather Hazards, I.A. Daglis (Ed.), Kluwer Academic Publ., 103.

    Google Scholar 

  • Tsurutani, B.T., W.D. Gonzalez, F. Tang, Y.T. Lee, 1992, Great Magnetic Storms, Geophys. Res. Lett., 19, 73.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., W.D. Gonzalez, G.S. Lakhina and S. Alex, The Extreme Magnetic Storm of September 1–2, 1859.

    Google Scholar 

  • Uchida, Y., et al., Eds., 1994, X-ray solar physics fromYohkoh, Tokyo, University Academy Press.

    Google Scholar 

  • Veselovsky, I.S., M.I. Panasyuk, S.I. Avdyushin, G.A. Bazilevskaya, A.V. Belov, S.A. Bogachev, V.M. Bogod, A.V. Bogomolov, V. Bothmer, K.A. Boyarchuk, E.V. Vashenyuk, V.I. Vlasov, A.A. Gnezdilov, R.V. Gorgutsa, V.V. Grechnev, Yu.I. Denisov, A. V. Dmitriev, M. Dryer, Yu.I. Yermolaev, E.A. Eroshenko, G.A. Zherebtsov, I.A. Zhitnik, A.N. Zhukov, G.N. Zastenker, L.M. Zelenyi, M.A. Zeldovich, G.S. Ivanov-Kholodnyi, A.P. Ignat’ev, V.N. Ishkov, O.P. Kolomiytsev, I.A. Krasheninnikov, K. Kudela, B.M. Kuzhevsky, S.V. Kuzin, V.D. Kuznetsov, S.N. Kuznetsov, V.G. Kurt, L.L. Lazutin, L.N. Leshchenko, M.L. Litvak, Yu.I. Logachev, G. Lawrence, A.K. Markeev, V.S. Makhmutov, A.V. Mitrofanov, I.G. Mitrofanov, O.V. Morozov, I.N. Myagkova, A. A. Nusinov, S.N. Oparin, O.A. Panasenco, A.A. Pertsov, A.A. Petrukovich, A.N. Podorol’sky, E.P. Romashets, S.I. Svertilov, P.M. Svidsky, A.K. Svirzhevskaya, N.S. Svirzhevsky, V.A. Slemzin, Z. Smith, I.I. Sobel’man, D. E. Sobolev, Yu.I. Stozhkov, A.V. Suvorova, N.K. Sukhodrev, I.P. Tindo, S.Kh. Tokhchukova, V.V. Fomichev, I.V. Chashey, I.M. Chertok, V.I. Shishov, B.Yu. Yushkov, O.S. Yakovchouk, and V.G. Yanke, Solar and Heliospheric Phenomena in October-November 2003: Causes and Effects, Translated from Kosmicheskie Issledovaniya, Vol.42, No.5, 453–508, 2004; Cosmic Research, Vol.42, No.5, 435-488, 2004.

    Google Scholar 

  • Veselovsky, I.S., V. Bothmer, P. Cargill, A.V. Dmitriev, K.G. Ivanov, E.R. Romashets, A.N. Zhukov, O.S. Yakovchouk, 2005, Magnetic storm cessation during northward IMF, Adv. Space Res., 36, 2460.

    Article  ADS  Google Scholar 

  • Timothy, A.F., A.S. Krieger, G.S. Vaiana, 1975, Sol. Phys., 42, 135.

    Article  ADS  Google Scholar 

  • Uchida, Y., et al., Eds., 1994, X-ray solar physics from Yohkoh, Tokyo: Univ. Academy Press.

    Google Scholar 

  • von Humboldt, A., 1808, Magnetische Ungewitter, Annalen der Physik, 29, 25.

    Google Scholar 

  • Vourlidas, A., Buzasi, D., Howard, R. A., Esfandiari, E., 2002, Mass and energy properties of LASCO CMEs, in ESA SP-506: Solar Variability: From Core to Outer Frontiers, 91–94.

    Google Scholar 

  • Wang, Y.M., 2000, Astrophys. J., 543, L89.

    Article  ADS  Google Scholar 

  • Wang, Y.M., S.H. Hawley, N.R. Sheeley Jr., 1996, The Magnetic Nature of Coronal Holes, Science, 271, 464.

    Article  ADS  Google Scholar 

  • Wang, Y.M., A.G. Nash, N.R. Sheeley Jr., 1989, Evolution of the sun’s polar fields during sunspot cycle 21: Poleward surges and long-term behavior, Astrophys. J., 347, 529.

    Article  ADS  Google Scholar 

  • Wang, Y.M., N.R. Sheeley Jr., 1992, On potential-field models of the olar corona, Astrophys. J., 392, 310.

    Article  ADS  Google Scholar 

  • Wang, Y.M., N.R. Sheeley Jr., 1989, Average properties of bipolar magentic regions during sunspot cycle 21, Solar Phys., 124, 81.

    Article  ADS  Google Scholar 

  • Wang, Y.M., N.R. Sheeley Jr., 1999, Filament eruptions near emerging bipoles, Astrophys. J., 510, L157.

    Article  ADS  Google Scholar 

  • Wang, Y.M., N.R. Sheeley Jr., M.D. Andrews, 2002, Polarity reversal of the solar magnetic field during cycle 23, J. Geophys. Res., 107, A12, 1465, doi: 10.1029/2002JA009463.

    Google Scholar 

  • Wang, Y.M., N.R. Sheeley, J.H. Walters, G.E. Brueckner, R.A. Howard, D.J. Michels, P.L. Lamy, R. Schwenn, G.M. Simnett, 1998, Origin of streamer material in the outer corona, Astrophys. J., 498, L165.

    Article  ADS  Google Scholar 

  • Webb., D., E.W. Cliver, N.U. Crooker, O.C. St. Cyr, B.J. Thompson, 2000, Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms, J. Geophys. Res., 105, 7491.

    Article  ADS  Google Scholar 

  • Webb, D.F., N.U. Crooker, S.P. Plunkett, O.C. St. Cyr, 2xxx, The solar sources of geoeffective structures, xx, AGU Monogr. xx, Chapman Conf. on Space Weather, Eds. P. Song, G. Siscoe & H. Singer, xxxx.

    Google Scholar 

  • Wilson, R.M., and Hildner, E., 1986, On the association of magnetic clouds with disappearing filaments, J. Geophys. Res., 91, 5867–5872.

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O. C., Plunkett, S. P., Rich, N. B., Howard, R. A., 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft, J. Geophys. Res., 7105.

    Google Scholar 

  • Young, C.A., 1872, The sun and the phenomena of ist atmosphere, New Haven, Conn., C.C. Chatfield & Co.

    Google Scholar 

  • Yurchyshyn, V.B., Wang, H., Goode, P.R., Deng, Y., 2001, Orientation of the Magnetic Fields in Interplanetary Flux Ropes and Solar Filaments, Astrophys. J., 563, 381.

    Article  ADS  Google Scholar 

  • Zhang G., L.F. Burlaga, 1988, Magnetic clouds, geomagnetic disturbances and cosmic ray decreases, J. Geophys. Res., 93, 2511.

    Article  ADS  Google Scholar 

  • Zhang, J., 2001, On the temporal relationship between coronal mass ejections and flares, Astrophys. J., 559, 452

    Article  ADS  Google Scholar 

  • Zhang, J., K.P. Dere, R.A. Howard, V. Bothmer, 2003, Identification of Solar Sources of Major Geomagnetic Storms between 1996 and 2000, ApJ., 582, 520.

    Article  ADS  Google Scholar 

  • Zhao, X.P., D.F. Webb, Source regions and storm effectiveness of frontside full halo coronal mass ejections, J. Geophys. res., 108, 1234, doi: 10.1029/2002JA009606, 203.

    Google Scholar 

  • Zhukov, A.N., F. Auchere, 2004, On the nature of EIT waves, EUV dimmings and their link to CMEs, Astron. & Astrophys., 427, 705.

    Article  ADS  Google Scholar 

  • Zhukov, A.N., I.S. Veselovsky, F. Clette, J.-F. Hochedez, A.V. Dmitriev, E.P. Romashets, V. Bothmer, and P. Cargill, 2003, Solar Wind Disturbances and Their Sources in the EUV Solar Corona. In: SOLAR WIND TEN: Proceedings of the Tenth International Solar Wind Conference, Pisa, Italy, 17–21 June 2002. Eds.: Marco Velli, Roberto Bruno, Francesco Malara. AIP Conference Proceedings, Vol. 679, Issue 1, 711.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Praxis Publishing Ltd

About this chapter

Cite this chapter

Bothmer, V. (2006). The Solar Atmosphere and Space Weather. In: Blondel, P., Mason, J.W. (eds) Solar System Update. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-37683-6_1

Download citation

Publish with us

Policies and ethics