Skip to main content

Modeling of the Current Space Debris Environment

  • Chapter
Space Debris

Part of the book series: Springer Praxis Books ((ASTROENG))

Abstract

The description of the space debris environment and its sources in Chapter 2 reflects a widely accepted, common understanding among space debris researchers. There are, however, different methods in existence for reproducing the observed environment by means of mathematical and physical models of release processes, for propagating orbits of release products, and for mapping the propagated environment onto spatial and temporal distributions of object densities, transient velocities, and impact fluxes. The subsequent chapters will focus on methods which have been developed at ESA, or under ESA contracts in context with ESA’s MASTER-2001 model (Meteoroid and Space Debris Terrestrial Environment Reference, (Bendisch et al., 2002)). At the end of this chapter a general overview of some of the most prominent space debris environment models will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.12 References

  • Akiba, R. et al. (1990). Behavior of Aluminum Particles Exhausted by Solid Rocket Motors. In Orbital Debris Conference, Baltimore/MD, AIAA/NASA/DoD.

    Google Scholar 

  • Aksnes, K. (1976). Short-Period and Long-Period Perturbations of a Spherical Satellite Due to Direct Solar Radiation Pressure. Celestial Mechanics, vol.13:89–104.

    Article  MATH  Google Scholar 

  • Bendisch, J., Bunte, K., Sdunnus, H., Wegener, P., Walker, R., and Wiedemann, C. (2002). Upgrade of ESA’s MASTER Model. Technical Report (final report) ESA contract 14710/00/D/HK, ILR/TUBS, Braunschweig.

    Google Scholar 

  • Goldstein, R., Goldstein, S., and Kessler, D. (1998). Radar Observations of Space Debris. Planetary and Space Sciences, vol.46, no.8:1007–1013.

    Article  Google Scholar 

  • Hernández, C., Pina, F., Sánchez, N., Sdunnus, H., and Klinkrad, H. (2001). The DISCOS Database and Web Interface. In Proceedings of the Third European Conference on Space Debris, ESA SP-473, pages 803–807.

    Google Scholar 

  • Johnson, N., Krisko, P., Liou, J., and Anz-Meador, P. (2001). NASA’s New Break-Up Model of EVOLVE 4.0. Advances in Space Research, vol.28, no.9:1377–1384.

    Article  Google Scholar 

  • Kerridge, D., Carlaw, V., and Beamish, D. (1989). Development and Testing of Computer Algorithms for Solar and Geomagnetic Activity Forecasting. Technical Report WM/89/22C [ESA CR(P) 3039], British Geological Survey.

    Google Scholar 

  • Kessler, D. (1985). The Effects of Particulates from Solid Rocket Motors Fired in Space. Advances in Space Research, vol.5:77–86.

    Article  Google Scholar 

  • King-Hele, D. (1987). Satellite Orbits in an Atmosphere: Theory and Applications. Blackie, Glasgow, UK.

    Google Scholar 

  • Klinkrad, H. (1993). Collision Risk Analysis for Low Earth Orbits. Advances in Space Research, vol.13:551–557.

    Article  Google Scholar 

  • Krag, H., Bendisch, J., Rosebrock, J., Schildknecht, T., and Sdunnus, H. (2002). Sensor Simulation for Debris Detection. Technical Report (final report) ESA contract 14708/00/D/HK, ILR/TUBS, Braunschweig.

    Google Scholar 

  • Liou, J., Matney, M., Anz-Meador, P., Kessler, D., Jansen, M., and Theall, J. (2001). The New NASA Orbital Debris Engineering Model ORDEM2000. In Proceedings of the Third European Conference on Space Debris, ESA SP-473, pages 309–313.

    Google Scholar 

  • Liu, J. and Alford, R. (1979). A Semi-Analytic Theory for the Motion of a Close-Earth Artificial Satellite with Drag. In 17th Aerospace Sciences Meeting, New Orleans, AIAA Paper No. 79-0123.

    Google Scholar 

  • Maclay, T. and McKnight, D. (1994). The Contribution of Debris Wakes from Resident Space Objects in the Orbital Debris Environment. Safety & Rescue Science & Technology Series, vol.88:215–228.

    Google Scholar 

  • McDonnell, J. et al. (1999). Meteoroid and Debris Flux and Ejecta Models. Technical Report (final report) ESA contract 1887/96/NL/JG, Unispace Kent, Canterbury, UK.

    Google Scholar 

  • Meyer, R. (1992). In-Flight Formation of Slag in Spinning Solid Propellant Rocket Motors. Journal of Propulsion & Power, vol.8, no.1:45–50.

    Article  Google Scholar 

  • Montenbruck, O. and Gill, E. (2000). Satellite Orbits — Models, Methods, and Applications. Springer, Berlin, Heidelberg, New York.

    MATH  Google Scholar 

  • Morton, T. and Ferguson, D. (1993). Atomic Oxygen Exposure of Power System and Other Spacecraft Materials: Results of the EOIM-3 Experiment. Technical Report NASA TM 107427, NASA Lewis Research Center.

    Google Scholar 

  • Nazarenko, A. and Menshikov, I. (2001). Engineering Model of the Space Debris Environment. In Proceedings of the Third European Conference on Space Debris, ESA SP-473, pages 293–298.

    Google Scholar 

  • Ojakangas, G. et al. (1996). Solid-Rocket-Motor Contributions to the Large-Particle Orbital Debris Population. Journal of Spacecraft & Rockets, vol.33, no.4:513–518.

    Google Scholar 

  • Roth, E. (1996). Construction of a Consistent Semi-analytic Theory of a Planetary or Moon Orbiter Perturbed by a Third Body. Celestial Mechanics, vol.28:155–169.

    Article  Google Scholar 

  • Schildknecht, T., Ploner, M., and Hugentobler, U. (2001). The Search for Debris in GEO. Advances in Space Research, vol.28, no.9:1291–1299.

    Article  Google Scholar 

  • Seidelmann, P. et al., editors (1992). Explanatory Supplement to the Astronomical Almanac. University Science Books, Mill Valley, CA.

    Google Scholar 

  • Stansbery, G., Matney, M., Settecerri, T., and Bade, A. (1997). Debris Families Observed by the Haystack Orbital Debris Radar. Acta Astronautica, vol.41, no.1:53–56.

    Article  Google Scholar 

  • Wiedemann, C., Oswald, M., Stabroth, S., Vörsmann, P., and Klinkrad, H. (2004). NaK Droplet Size Distribution. Technical Report ILR-IB-2004-001, rel 0.9, Institute of Aerospace Systems, TU Braunschweig.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Klinkrad, H., Wegener, P., Wiedemann, C., Bendisch, J., Krag, H. (2006). Modeling of the Current Space Debris Environment. In: Space Debris. Springer Praxis Books. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-37674-7_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-37674-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25448-5

  • Online ISBN: 978-3-540-37674-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics