Advertisement

Special techniques

Chapter
  • 1.5k Downloads
Part of the Springer Praxis Books book series (PRAXIS)

Keywords

Special Technique True Anomaly Gravity Perturbation Spacecraft Velocity Vector Perigee Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 4

Motion about the Lagrange libration points and the three body problem

  1. 4.1
    J. W. Cornelisse, H.F.R. Schoyer and K.F. Wakker, In: Rocket Propulsion and Spaceflight Dynamics. pp. 337–354. Pitman, London, 1979.Google Scholar
  2. 4.2.
    G. Gomez, J. Masdemont and C. Simo, Quasihalo orbits associated with Libration points. The Journal of the Astronautical Sciences, 46(2), 135–176, 1998.MathSciNetGoogle Scholar
  3. 4.3.
    G. Gomez, A. Jorba, J.J. Masdemont and C. Simo, Dynamics and Mission Design Near Libration Point Orbits, Volume 4: Advanced Methods for Collinear Points. World Scientific, River Edge, NJ, 2001.Google Scholar
  4. 4.4.
    G. Gomez, A. Jorba, J.J. Masdemont and C. Simo, Dynamics and Mission Design Near Libration Point Orbits, Advanced Methods for Triangular points, World Scientific, River Edge, NJ, 2001.Google Scholar
  5. 4.5.
    G. Gomez, W.S. Koon, M.W. Lo, J.E. Marsden, J.J. Masdemont and S.D. Ross, Invariant manifolds, the spatial three-body problem and space mission design. Advances in the Astronautical Sciences, 109, 3–22, 2001.Google Scholar
  6. 4.6.
    M. Hechler, J. Corbos and M. Bello-Mora, Orbits around L2 for First, Planck and GAIA Astronomy missions. IAC 1999, Amsterdam (IAF-99-A.2.02).Google Scholar
  7. 4.7.
    M. Hechler and A. Yanez, Orbits around L2 with non-gravitational perturbations. IAC 2004, Vancouver (IAC-04-A.7.01).Google Scholar
  8. 4.8.
    K.C. Howell, B.T. Barden and M.W. Lo, Application of dynamical system theory to trajectory design for a libration point mission. Journal of Astronautical Sciences, 45(2), 161–178, 1997.MathSciNetGoogle Scholar
  9. 4.9.
    K.C. Howell and H.J. Pernicka, Station keeping for libration point trajectories. Journal of Guidance, Control and Dynamics, 16(1), 151–159, 1993.Google Scholar
  10. 4.10.
    K.C. Howell and L.A. Hinday-Johnston, Time free transfers between libration-point orbits in the elliptic restricted three body problem. Acta Astronautica, 32, 245–254, 1994.CrossRefGoogle Scholar
  11. 4.11.
    A. Jorba and J. Masdemont, Dynamics of the centre manifold of the collinear points in the restricted three body problem. Physics D, 132, 189–213, 1999.zbMATHMathSciNetCrossRefGoogle Scholar
  12. 4.12.
    W.S. Koon, M.W. Lo, J.E. Marsden and S.D. Ross, Heteroclinic connections between periodic orbits and resonant transitions. Chaos, 10(2) 427–469, 2000.zbMATHMathSciNetCrossRefGoogle Scholar
  13. 4.13.
    W.S. Koon, M.W. Lo, J.E. Marsden and S.D. Ross, Dynamical systems, the three body problem and space mission design. In: B. Fielder, K. Groger and J. Sprekels (eds), International Conference on Differential Equations, Berlin, 1999, pp. 1167–1181. World Scientific, River Edge, NJ, 2000.Google Scholar
  14. 4.14.
    D.L. Richardson, A note on a Lagrangian formulation for motion about the Collinear points. Celestial Mechanics, 22, 231–236, 1980.zbMATHMathSciNetCrossRefGoogle Scholar
  15. 4.15.
    D.L. Richardson, Analytical construction of periodic orbits about the collinear points. Celestial Mechanics, 22(3), 241–253, 1980.zbMATHMathSciNetCrossRefGoogle Scholar
  16. 4.16.
    C. Simo, G. Gomez, J. Llibre, R. Martinez and R. Rodriquez, On the optimal station keeping control of Halo orbits. Acta Astronautica, 15(6), 391–397, 1987.CrossRefGoogle Scholar
  17. 4.17.
    C. Simo, Dynamical systems methods for space missions on a vicinity of collinear libration points. In: C. Simo (ed.), Hamiltonian Systems with Three or More Degrees of Freedom, pp. 223–241. Kluwer Academic Publishers, 1999.Google Scholar
  18. 4.18.
    A.E. Roy, The many body problem. In: Orbital Motion, pp. 111–163. Adam Hilger Co., Bristol, 1982.Google Scholar
  19. 4.19.
    G. Gómez, M.W. Lo, J.J. Masdemont (eds), Libration point orbits and applications. In: Proceedings of the Conference Aiguablava, Spain 10–14 June, 2002. World Scientific, River Edge, NJ, 2002.Google Scholar

Missions to the Lagrange libration points

  1. 4.20.
    R.W. Farquhar, D.P. Muhonen, C.R. Newman and H.S. Heuberger, Trajectories and orbital manoeuvres for the first Libration point satellite. Journal of Guidance and Control, 3, 549–554, 1980.Google Scholar
  2. 4.21.
    R.W. Farquhar, D.P. Muhonen, C.R. Newman and H.S. Heuberger, The first Libration point satellite. AAS/AIAA Astrodynamics specialist conference, 1979.Google Scholar
  3. 4.22.
    R.W. Farquhar and D.P. Muhonen, Mission Design for a Halo Orbiter of the Earth. Journal of Spacecraft, 14(3), 170, 1977.Google Scholar
  4. 4.23.
    M. Hechler and J. Corbos, Herschel, Plank and Gaia Orbit Design, Libration Point Orbits and Applications. Girona, Spain, 2002.Google Scholar
  5. 4.24.
    S. Kemble, M. Landgraf and C. Tirabassi, The design of the SMART-2/LISA-Pathfinder mission, IAC-2004, Vancouver (IAC.04.A.207).Google Scholar
  6. 4.25.
    M. Landgraf, M. Hechler, and S. Kemble, Mission design for LISA Pathfinder. Classical Quantum Gravity, 22, S487–S492, 2005.CrossRefGoogle Scholar
  7. 4.26.
    M.W. Lo, B.G. Williams, W.E. Bollman, D. Han, Y. Hahn, J.L. Bell, E.A. Hirst, R.A. Corwin, P.E. Hong, K.C. Howell, B.T. Barden and R.S. Wilson, Genesis mission design. AIAA Space Flight Mechanics (AIAA 96-4468 1998).Google Scholar

Gravitational capture

  1. 4.27.
    E.A. Belbruno, Examples of the nonlinear dynamics of ballistic capture and escape in the Earth-Moon system. AIAA Astrodynamics conference, Portland, August, 1990 (AIAA-90-2896).Google Scholar
  2. 4.28.
    M. Bello-Mora, F. Graziani, P. Teofilatto, C. Circi, M. Porfilio, M. Hechler, A systematic analysis on Weak Stability Boundary transfers to the Moon. I AC 2000, Rio de Janiero (IAF-00-A.6.03).Google Scholar
  3. 4.29.
    A. Castillo, M. Bello-Mora, J. Gonzalez, G. Janin, F. Graziani, P. Teofilatto and C. Circi, Use of Weak Stability Boundary trajectories for planetary capture. IAC-2003, Bremen (IAF-03-A.P.31).Google Scholar
  4. 4.30.
    K.C. Howell, B.G. Marchand and M.W. Lo, Temporary Satellite capture of short period Jupiter family comets from the perspective of dynamical systems. AAS/AIAA Space Flight Mechanics Meeting (AAS 00-155, 2000).Google Scholar
  5. 4.31.
    R. Jehn, S. Campagnola, D. Garcia and S. Kemble, Low-thrust approach and gravitational capture at Mercury. 18th Int. Symposium on Space Flight Dynamics, Munich, Germany, Oct, 2004.Google Scholar
  6. 4.32.
    S. Kemble, Interplanetary missions utilising capture and escape through the Lagrange points. IAC 2003, Bremen (IAC-03-A.1.01).Google Scholar
  7. 4.33.
    W.S. Koon, W.S., Lo, M.W., Marsden, J.E. and S.D. Ross, Resonance and capture of Jupiter comets. Celestial Mechanics and Dynamical Astronomy, 81(1–2), 27–38, 2001.zbMATHMathSciNetCrossRefGoogle Scholar
  8. 4.34.
    M.W. Lo and S.D. Ross, Low-energy interplanetary transfers using the invariant manifolds of L1,L2 and Halo orbits. AAS/AIAA Space Flight Mechanics meeting, Monterey, 1998 (AAS-98-136).Google Scholar
  9. 4.35.
    S.D. Ross, Statistical theory of interior-exterior transition and collision probabilities for minor bodies on the solar system. In: G. Gomez, M.W. Lo and J.J. Masdemont (eds), Libration Point Orbits and Applications, pp. 637–652. World Scientific, River Edge, NJ, 2003.Google Scholar
  10. 4.36.
    F. Topputo, M. Vasile and A.E. Finzi, Combining two and three body dynamics for low-energy transfer trajectories of practical interest. I AC 2004, Vancouver (IAC-04-A.7.02).Google Scholar

Interplanetary missions with gravity assist

  1. 4.37.
    R.H. Battin, An introduction to the mathematics and methods of Astrodynamics (AIAA Education series, pp. 419–437). AIAA, New York, 1987.zbMATHGoogle Scholar
  2. 4.38.
    S. Campagnola, R. Jehn and C. Corral, Design of Lunar Gravity Assist for the BepiColombo Mission to Mercury. AAS 04-130, 14th AAS/AIAA Space Flight Mechanics Conference, Maui, Hawaii, Feb, 2004.Google Scholar
  3. 4.39.
    J.M. Deerwester, Jupiter swingby missions to the Outer Planets. Journal of Spacecraft and Rockets, 3(10), 1564–1567, 1966.Google Scholar
  4. 4.40.
    A.F. Heaton, N.J. Strange, J.M. Longuski and E.P. Bonfiglio, Automated design of the Europa orbiter tour (AIAA 2000-4034).Google Scholar
  5. 4.41.
    M. Lavagna, A. Povoleri and A.E. Finzi, Interplanetary mission design manoeuvre multi-objective evolutive optimisation. I AC 2004, Vancouver (IAC-04-A.1.02).Google Scholar
  6. 4.42.
    J.R. Johannesen and L.A. D’Amario, Europa Orbiter mission trajectory design. AAS/ AIAA Astrodynamics specialist conference, Girdwood, August, 1999 (AAS 99-360).Google Scholar
  7. 4.43.
    J.M. Longuski and S.N. Williams, Automated design of gravity assist trajectories to Mars and the outer planets. Celestial Mechanics and Dynamical Astronomy, 52(3), 207–220, 1991.CrossRefGoogle Scholar
  8. 4.44.
    J.V. McAdams and R.L. McNutt, Ballistic Jupiter gravity assist perihelion DV trajectories for an Interstellar explorer. Journal of Astronautical Sciences, 51(2), 179–193, 2003.Google Scholar
  9. 4.45.
    M.A. Minovitch, Gravity thrust Jupiter orbiter trajectories generated by encountering the Galilean satellites. Journal of Spacecraft and Rockets, 9, 751–756, 1972.Google Scholar
  10. 4.46.
    J.C. Niehoff, Gravity assisted trajectories to Solar System targets. Journal of Spacecraft and Rockets, 3(9), 1351–1356, 1966.CrossRefGoogle Scholar

Low thrust

  1. 4.47.
    R.H. Battin, An introduction to the mathematics and methods of Astrodynamics (AIAA Education series, pp. 471–490). AIAA, New York, 1987.zbMATHGoogle Scholar
  2. 4.48.
    D. Fearn, The use of Ion thrusters for orbit raising. Journal of British Interplanetary Society, 33, 129–137, 1980.Google Scholar
  3. 4.49.
    A.E. Roy, Orbital Motion, pp. 179–205. Adam Hilger Co., Bristol, 1982.zbMATHGoogle Scholar

Low-thrust departure optimisation

  1. 4.50.
    M. Hechler, AGORA: asteroid rendezvous low thrust mission basic trajectory data for S/C design. European Space Operations Centre, 1983. M.A.O. working paper No. 186.Google Scholar
  2. 4.51.
    J.B. Serrano-Martinez and M. Hechler, Low-thrust asteroid rendezvous tours with Vesta. European Space Operations Centre, 1985. M.A.O. working paper No. 223.Google Scholar

Interplanetary missions with low thrust

  1. 4.52.
    L.K. Atkins, C.G. Sauer and G.A. Flandro, Solar electric propulsion combined with Earth gravity assist: A new potential for planetary exploration. AAS/AIAA Astrodynamics specialist conference, San Diego, August, 1976 (AAS 76-807).Google Scholar
  2. 4.53.
    L. Casalino, G. Colasurdo and D. Pastrone, Optimal low-thrust escape trajectories using fly-by. Journal of Guidance, Control and Dynamics, 22(5), 637–642, 1999.Google Scholar
  3. 4.54.
    L. Casalino, G. Colasurdo, D. Pastrone, Optimisation low-DV Earth gravity assist trajectories. Journal of Guidance, Control and Dynamics, 21(6), 991–995, 1998.Google Scholar
  4. 4.55.
    G. Colasurdo and L. Casalino, A new mission concept to reach near Earth planets, (AIAA 2000-4137).Google Scholar
  5. 4.56.
    J. Kawaguchi, Solar electric propulsion leverage, Electric Delta-VEGA (EDVEGA) scheme and its applications. AAS/AIAA Space Flight Mechanics meeting, Santa Barbara, CA, Feb, 2001 (AAS 01-213).Google Scholar
  6. 4.57
    S. Kemble, Optimised Transfers to Mercury. IAC Toulouse, 2001 (IAF-01-A.5.03).Google Scholar
  7. 4.58.
    S. Kemble and M.J. Taylor, Mission design options for a small satellite mission to Jupiter. IAC Bremen, 2003 (IAF-03-A.09).Google Scholar
  8. 4.59.
    M. MacDonald and C.R. McInnes, Analytical control laws for near optimal geocentric solar sail transfers. American Astronautical Society, AAS 01-472.Google Scholar
  9. 4.60.
    H.F. Meissinger, Earth Swingby, a novel approach to interplanetary missions using electric propulsion. AIAA 8th Electric Propulsion conference, Stanford, 1970.Google Scholar
  10. 4.61.
    A.E. Petropoulos and J.M. Longuski, A shape based algorithm for the automated design of low-thrust, gravity assist trajectories. AAS/AIAA Astrodynamics specialist conference, Quebec, Jul–August, 2001 (AAS 01-467).Google Scholar
  11. 4.62.
    A.E. Petropoulos, J.M. Longuski, N.X. Vinh, Shape based analytic representation of low thrust trajectories for gravity assist application. AAS/AIAA Astrodynamics specialist conference, Girdwood, August, 1999 (AAS 99-337).Google Scholar
  12. 4.63.
    J.A. Sims, J.M. Longuski and A.J. Staugler, Vinfinity leveraging for interplanetary missions: Multiple revolution orbit techniques. Journal of Guidance, Control and Dynamics, 20(3), 409–415, 1997.zbMATHCrossRefGoogle Scholar

Aerobraking and aerocapture

  1. 4.64.
    J. Beerer, R. Brooks, P. Esposito, D. Lyons, W. Sidney, H. Curtis and W. Willcockson, Aerobraking at Mars: The MGS Mission. AIAA 34th Aerospace Sciences Meeting, Reno, NV, Jan, 1996 (AIAA 96-0334).Google Scholar
  2. 4.65.
    J. R. French, Aerobraking and Aerocapture for Mars Missions, AAS 81-246.Google Scholar
  3. 4.66.
    M. Vasile, Robustness optimisation of aerocapture trajectory design using a hybrid coevolutionary approach. 18th International Symposium on Space Flight Dynamics, October 2004, Munich.Google Scholar

Copyright information

© Praxis Publishing Ltd, Chichester, UK 2006

Personalised recommendations