Skip to main content

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 54))

  • 298 Accesses

Abstract

In cases of corneal epithelial stem cell deficiency where ocular surface reconstruction is required, corneal epithelial replacement using a tissue engineering technique shows great potential. Autologous cultivated corneal epithelial stem cell sheets are the safest and most reliable forms of sheet we can use for such treatment; however, they are not useful for treating bilaterally affected ocular surface disorders. In order to treat such cases, we must choose either an allogeneic cultivated corneal epithelial sheet or an autologous cultivated oral mucosal epithelial sheet. If we use the former, the threat of immunological reaction must be dealt with. Therefore, it is imperative that we have a basic understanding of the immunological aspects of ocular surface reconstruction using allogeneic tissues. When using an autologous cultivated oral mucosal epithelial sheet, a basic understanding of ocular surface epithelial biology is required as the sheet is not exactly the same as corneal epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballen PH (1963) Mucous membrane grafts in chemical (lye) burns. Am J Ophthalmol 55:302–312

    PubMed  CAS  Google Scholar 

  • Ban Y, Cooper LJ, Fullwood NJ, Nakamura T, Tsuzuki M, Koizumi N, Dota A, Mochida C, Kinoshita S (2003) Comparison of ultrastructure, tight junction-related protein expression and barrier function of human corneal epithelial cells cultivated on amniotic membrane with and without air-lifting. Exp Eye Res 76:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209

    Article  PubMed  CAS  Google Scholar 

  • Dua HS, Azuara-Blanco A (1999) Amniotic membrane transplantation. Br J Ophthalmol 83:748–752

    Article  PubMed  CAS  Google Scholar 

  • Endo K, Nakamura T, Kawasaki S, Kinoshita S (2004) Human amniotic membrane, like corneal epithelial basement membrane, manifests the a5 chain of type IV collagen. Invest Ophthalmol Vis Sci. 45:1771–1774

    Article  PubMed  Google Scholar 

  • Friend J, Kinoshita S, Thoft RA, Eliason JA (1982) Corneal epithelial cell cultures on stromal carriers. Invest Ophthalmol Vis Sci 23:41–49

    PubMed  CAS  Google Scholar 

  • Fukuda K, Chikama T, Nakamura M, Nishida T (1999) Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea and conjunctiva. Cornea 18:73–79

    Article  PubMed  CAS  Google Scholar 

  • Gipson IK, Grill SM (1982) A technique for obtaining sheets of intact rabbit corneal epithelium. Invest Ophthalmol Vis Sci 23:269–273

    PubMed  CAS  Google Scholar 

  • Gipson IK, Friend J, Spurr SJ (1985) Transplantation of corneal epithelium to rabbit corneal wounds in vivo. Invest Ophthalmol Vis Sci 26:425–233

    PubMed  CAS  Google Scholar 

  • Gipson IK, Geggel HS, Spurr-Michaud SJ (1986) Transplant of oral mucosal epithelium to rabbit ocular surface wounds in vivo. Arch. Ophthalmol 104:1529–1533

    PubMed  CAS  Google Scholar 

  • Griffith M, Osborne R, Munger R, Xiong X, Doillon CJ, Laycock NL, Hakim M, Song Y, Watsky MA (1999) Functional human corneal equivalents constructed from cell lines. Science 286:2169–2172

    Article  PubMed  CAS  Google Scholar 

  • Grueterich M, Espana E, Tseng SC(2002) Connexin 43 expression and proliferation of human limbal epithelium on intact and denuded amniotic membrane. Invest Ophthalmol Vis Sci 43:63–71

    PubMed  Google Scholar 

  • Holland EJ, Schwartz GS (1996) The evolution of epithelial transplantation for severe ocular surface disease and a proposed classification system. Cornea 15:549–556

    PubMed  CAS  Google Scholar 

  • Kaufman HE (1984) Keratoepithelioplasty for the replacement of damaged corneal epithelium. Am J Ophthalmol 97:100–101

    PubMed  CAS  Google Scholar 

  • Kenyon KR, Tseng SC (1989) Limbal autograft transplantation for ocular surface disorders. Ophthalmology 96:709–722

    PubMed  CAS  Google Scholar 

  • Kim JC, Tseng SC (1995) Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea 14:473–484

    PubMed  CAS  Google Scholar 

  • Kim JS, Kim JC, Na BK, Jeong JM, Song CY (2000) Amniotic membrane patching promotes healing and inhibits protease activity on wound healing following acute corneal alkali burn. Exp Eye Res 70:329–337

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita S, Ohashi Y, Ohji M, Manabe R (1991) Long-term results of keratoepithelioplasty in Mooren’s ulcer. Ophthalmology 98:438–445

    PubMed  CAS  Google Scholar 

  • Kinoshita S, Adachi W, Sotozono C, Nishida K, Yokoi N, Quantock AJ, Okubo K (2001) Characteristics of the human ocular surface epithelium. Prog Retin Eye Res 20:639–673

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Ikada Y (1991) Corneal cell adhesion and proliferation on hydrogel sheets bound with cell-adhesive proteins. Curr Eye Res 10:899–908

    PubMed  CAS  Google Scholar 

  • Koizumi N, Inatomi T, Sotozono C, Fullwood NJ, Quantock AJ, Kinoshita S (2000a) Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 20:173–177

    Article  PubMed  CAS  Google Scholar 

  • Koizumi N, Inatomi T, Quantock AJ, Fullwood NJ, Dota A, Kinoshita S (2000b) Amniotic membrane as a substrate for cultivating limbal corneal epithelial cells for autologous transplantation in rabbits. Cornea 19:65–71

    Article  PubMed  CAS  Google Scholar 

  • Koizumi N, Fullwood NJ, Bairaktaris G, Inatomi T, Kinoshita S, Quantock AJ (2000c) Cultivation of corneal epithelial cells on intact and denuded human amniotic membrane. Invest Ophthalmol Vis Sci 41:2506–2513

    PubMed  CAS  Google Scholar 

  • Koizumi N, Inatomi T, Suzuki T, Sotozono C, Kinoshita S (2001a) Cultivated corneal epithelial transplantation for ocular surface reconstruction in acute phase of Stevens-Johnson syndrome. Arch Ophthalmol 119:298–300

    PubMed  CAS  Google Scholar 

  • Koizumi N, Inatomi T, Suzuki T, Sotozono C, Kinoshita S (2001b) Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology 108:1569–1574

    Article  PubMed  CAS  Google Scholar 

  • Koizumi N, Cooper LJ, Fullwood NJ, Nakamura T, Inoki K, Tsuzuki M, Kinoshita S (2002) An evaluation of cultivated corneal limbal epithelial cells, using cell-suspension culture. Invest Ophthalmol Vis Sci 43:2114–2121

    PubMed  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 14:920–926

    Google Scholar 

  • Lee, SB Li DQ, Tan DT, Meller DC, Tseng SCG (2000) Suppression of TGF-beta signalling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane. Curr Eye Res 20:325–334

    Article  PubMed  CAS  Google Scholar 

  • Meller D, Pires RT, Tseng SC (2002) Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. Br J Ophthalmol 86:463–471

    Article  PubMed  CAS  Google Scholar 

  • Minami Y, Sugihara H, Oono S (1993) Reconstruction of cornea in three-dimensional collagen gel matrix culture. Invest Ophthalmol Vis Sci 34:2316–2324

    PubMed  CAS  Google Scholar 

  • Nakamura T, Koizumi N, Tsuzuki M, Inoki K, Sano Y, Sotozono C, Kinoshita, S (2003a) Successful regrafting of cultivated corneal epithelium using amniotic membrane as a carrier in severe ocular surface disease. Cornea 22:70–71

    Article  PubMed  Google Scholar 

  • Nakamura T, Endo K, Cooper L, Fullwood NJ, Tanifuji N, Tsuzuki M, Koizumi N, Inatomi T, Sano Y, Kinoshita S (2003b) The successful culture and autologous transplantation of rabbit oral mucosal epithelial cells on amniotic membrane. Invest Ophthalmol Vis Sci 44:6–16

    Google Scholar 

  • Nakamura T, Kinoshita S (2003c) Ocular surface reconstruction using cultivated mucosal epithelial stem cells. Cornea 22:S75–S80

    Article  PubMed  Google Scholar 

  • Nakamura T, Inatomi T, Sotozono C, Koizumi N, Kinoshita S (2004a) Successful primary culture and autologous transplantation of corneal limbal epithelial cells from minimal biopsy for unilateral severe ocular surface disease. Acta Ophthalmol Scan 82:468–471

    Article  Google Scholar 

  • Nakamura T, Inatomi T, Sotozono C, Amemiya T, Kanamura N, Kinoshita S (2004b) Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. Br J Ophthalmol 88:1280–1284

    Article  PubMed  CAS  Google Scholar 

  • Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, Yamamoto K, Nagai S, Kikuchi A, Tano Y, Okano T (2003) Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 77:379–385

    Google Scholar 

  • Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y (2004) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351:1187–1196

    Article  PubMed  CAS  Google Scholar 

  • Park WC, Tseng SCG (2000) Modulation of acute inflammation and keratocyte death by suturing, blood, and amniotic membrane in PRK. Invest Ophthalmol Vis Sci 41:2906–2914

    PubMed  CAS  Google Scholar 

  • Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990–993

    Article  PubMed  CAS  Google Scholar 

  • Rama P, Bonini S, Lambiase A, Golosano O, Paterna P, De Luca M, Pellegrini, G (2001) Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 72:1478–1485

    Article  PubMed  CAS  Google Scholar 

  • Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–344

    Article  PubMed  CAS  Google Scholar 

  • Schermer A, Galvin S, Sun T (1986) Differentiation-related expression of a major 64 K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103:49–62

    Article  PubMed  CAS  Google Scholar 

  • Schwab IR, Reyes M, Isseroff R (2000) Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea 19:421–426

    Article  PubMed  CAS  Google Scholar 

  • Solomon A, Rosenblatt M, Monroy D, Ji Z, Pflugfelder SC, Tseng SCG (2001) Suppression of interleukin 1α and interleukin 1β in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. Br J Ophthalmol 85:444–449

    Article  PubMed  CAS  Google Scholar 

  • Sotozono C, Inagaki K, Fujita A, Koizumi N, Sano Y, Inatomi T, Kinoshita, S (2002) Methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis infections in the cornea. Cornea 21:S94–S101

    PubMed  Google Scholar 

  • Thoft RA (1977) Conjunctival transplantation. Arch Ophthalmol 95:1425–1427

    PubMed  CAS  Google Scholar 

  • Thoft RA, Friend J (eds) (1979) The ocular surface. Int Ophthalmol Clin 19: 283 pp.

    Google Scholar 

  • Thoft RA (1984) Keratoepithelioplasty. Am J Ophthalmol 97:1–6

    PubMed  CAS  Google Scholar 

  • Tsai RJF, Tseng SCG (1994) Human allograft limbal transplantation for corneal surface reconstruction. Cornea 13:389–400

    PubMed  CAS  Google Scholar 

  • Tsai RJF, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93

    Article  PubMed  CAS  Google Scholar 

  • Tseng SCG, Li DQ, Ma X (1999) Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol 179:325–335

    Article  PubMed  CAS  Google Scholar 

  • Tsubota K, Satake Y, Ohyama M, Toda I, Takano Y, Ino M, Shinozaki N, Shimazaki J (1996) Surgical reconstruction of the ocular surface in advanced ocular cicatricial pemphigoid and Stevens-Johnson syndrome. Am J Ophthalmol 122:38–52

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kinoshita, S., Nakamura, T. (2005). Corneal Cells for Regeneration. In: Morser, J., Nishikawa, S.I. (eds) The Promises and Challenges of Regenerative Medicine. Ernst Schering Research Foundation Workshop, vol 54. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-37644-5_5

Download citation

Publish with us

Policies and ethics