Difference Metrics for Interactive Orthogonal Graph Drawing Algorithms

  • Stina Bridgeman
  • Roberto Tamassia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1547)


Preserving the “mental map” is major goal of interactive graph drawing algorithms. Several models have been proposed for formalizing the notion of mental map. Additional work needs to be done to formulate and validate “difference” metrics which can be used in practice. This paper introduces a framework for defining and validating metrics to measure the difference between two drawings of the same graph.


Distance Metrics Graph Drawing Angle Constraint Rotation Problem Original Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    H. Alt, O. Aichholzer, and G. Rote. Matching shapes with a reference point. Internat. J. Comput. Geom. Appl., 1997. to appear.Google Scholar
  2. [2]
    T. Biedl and M. Kaufmann. Area-efficient static and incremental graph drawings. In R. Burkard and G. Woeginger, editors, Algorithms-ESA’ 97, volume 1284 of Lecture Notes Comput. Sci, pages 37–52. Springer-Verlag, 1997.Google Scholar
  3. [3]
    U. Brandes and D. Wagner. A bayesian paradigma for dynamic graph layout. In G. Di Battista, editor, Graph Drawing (Proc. GD’ 97, volume 1353 of Lecture Notes Comput. Sci., pages 236–247. Springer-Verlag, 1997.Google Scholar
  4. [4]
    S. S. Bridgeman, J. Fanto, A. Garg, R. Tamassia, and L. Vismara. Interactive-Giotto: An algorithm for interactive orthogonal graph drawing. In G. Di Battista, editor, Graph Drawing (Proc. GD’ 97, volume 1353 of Lecture Notes Comput. Sci., pages 303–308. Springer-Verlag, 1997.Google Scholar
  5. [5]
    L. P. Chew, M. T. Goodrich, D. P. Huttenlocher, K. Kedem, J. M. Kleinberg, and D. Kravets. Geometric pattern matching under Euclidean motion. Comput. Geom. Theory Appl., 7:113–124, 1997.zbMATHMathSciNetGoogle Scholar
  6. [6]
    R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis. Dynamic graph drawings: Trees, series-parallel digraphs, and planar ST-digraphs. SIAM J. Comput., 24(5):970–1001, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl., 7:303–326, 1997.zbMATHGoogle Scholar
  8. [8]
    P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental map of a diagram. In Proceedings of Compugraphics 91, pages 24–33, 1991.Google Scholar
  9. [9]
    U. Fößmeier. Interactive orthogonal graph drawing: Algorithms and bounds. In G. Di Battista, editor, Graph Drawing (Proc. GD’ 97, volume 1353 of Lecture Notes Comput. Sci., pages 111–123. Springer-Verlag, 1997.Google Scholar
  10. [10]
    J. E. Goodman and R. Pollack. Multidimensional sorting. SIAM J. Comput., 12:484–507, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    M. T. Goodrich, J. S. B. Mitchell, and M. W. Orletsky. Practical methods for approximate geometric pattern matching un der rigid motion. IEEE Trans. Pattern Anal. Mach. Intell. to appear.Google Scholar
  12. [12]
    K. Imai, S. Sumino, and H. Imai. Minimax geometric fitting of two corresponding sets of points. In Proc. 5th Annu. ACM Sympos. Comput. Geom., pages 266–275, 1989.Google Scholar
  13. [13]
    K. A. Lyons, H. Meijer, and D. Rappaport. Algorithms for cluster busting in anchored graph drawing. Journal of Graph Algorithms and Applications, 2(1):1–24, 1998.MathSciNetGoogle Scholar
  14. [14]
    K. Miriyala, S. W. Hornick, and R. Tamassia. An incremental approach to aesthetic graph layout. In Proc. Internat. Workshop on Computer-Aided Software Engineering, 1993.Google Scholar
  15. [15]
    K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental map. J. Visual Lang. Comput., 6(2):183–210, 1995.CrossRefGoogle Scholar
  16. [16]
    S. Moen. Drawing dynamic trees. IEEE Software, 7:21–8, 1990.CrossRefGoogle Scholar
  17. [17]
    S. North. Incremental layout in DynaDAG. In Graph Drawing (Proc. GD’ 95), volume 1027 of Lecture Notes Comput. Sci., pages 409–418. Springer-Verlag, 1996.Google Scholar
  18. [18]
    A. Papakostas, J. M. Six, and I. G. Tollis. Experimental and theoretical results in interactive graph drawing. In S. North, editor, Graph Drawing (Proc. GD’ 96), volume 1190 of Lecture Notes Comput. Sci., pages 371–386. Springer-Verlag, 1997.Google Scholar
  19. [19]
    A. Papakostas and I. G. Tollis. Interactive orthogonal graph drawing. In Graph Drawing (Proc. GD’ 95), volume 1027 of Lecture Notes Comput. Sci. Springer-Verlag, 1996.Google Scholar
  20. [20]
    H. Purchase. Which aesthetic has the greatest effect on human understanding? In G. Di Battista, editor, Graph Drawing (Proc. GD’ 97), Lecture Notes Comput. Sci., pages 248–261. Springer-Verlag, 1997.Google Scholar
  21. [21]
    H. C. Purchase, R. F. Cohen, and M. James. Validating graph drawing aesthetics. In F.J. Brandenburg, editor, Graph Drawing (Proc. GD’ 95, volume 1027 of Lecture Notes Comput. Sci., pages 435–446. Springer-Verlag, 1996.Google Scholar
  22. [22]
    K. Ryall, J. Marks, and S. Shieber. An interactive system for drawing graphs. In S. North, editor, Graph Drawing (Proc. GD’ 96, volume 1190 of Lecture Notes Comput. Sci., pages 387–393. Springer-Verlag, 1997.Google Scholar
  23. [23]
    R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(1):61–79, 1988.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Stina Bridgeman
    • 1
  • Roberto Tamassia
    • 1
  1. 1.Department of Computer ScienceBrown UniversityProvidence

Personalised recommendations