Quasi-Upward Planarity

Extended Abstract
  • Paola Bertolazzi
  • Giuseppe Di Battista
  • Walter Didimo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1547)


In this paper we introduce the quasi-upward planar drawing convention and give a polynomial time algorithm for computing a quasiupward planar drawing with the minimum number of bends within a given planar embedding. Further, we study the problem of computing quasi-upward planar drawings with the minimum number of bends of digraphs considering all the possible planar embeddings. The paper contains also experimental results about the proposed techniques.


Outgoing Edge Undirected Edge External Face Split Component Planar Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. In G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, editors, Optimization, volume 1 of Handbooks in Operations Research and Management, pages 211–360. North-Holland, 1990.Google Scholar
  2. [2]
    P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum number of bends. In Proc. 5th Workshop Algorithms Data Struct., volume 1272 of Lecture Notes Comput. Sci., pages 331–344. Springer-Verlag, 1997.Google Scholar
  3. [3]
    P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino. Upward drawings of triconnected digraphs. Algorithmica, 6 (12):476–497, 1994.Google Scholar
  4. [4]
    P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia. Optimal upward planarity testing of single-source digraphs. In Proc. 1st Annu. European Sympos. Algorithms, volume 726 of Lecture Notes Comput. Sci., pages 37–48. Springer-Verlag, 1993.Google Scholar
  5. [5]
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. Theory Appl., 4:235–282, 1994.zbMATHGoogle Scholar
  6. [6]
    G. Di Battista, W. P. Liu, and I. Rival. Bipartite graphs upward drawings and planarity. Inform. Process. Lett., 36:317–322, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs. Theoret. Comput. Sci., 61:175–198, 1988.CrossRefMathSciNetzbMATHGoogle Scholar
  8. [8]
    G. Di Battista and R. Tamassia. On-line planarity testing. SIAM J. Comput., 25:956–997, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Garg and R. Tamassia. On the computational complexity of upward and rectilinear planarity testing. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD)’ 94), volume 894 of Lecture Notes Comput. Sci., pages 286–297. Springer-Verlag, 1995.Google Scholar
  10. [10]
    A. Garg and R. Tamassia. Upward planarity testing. Order, 12:109–133, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    A. Garg and R. Tamassia. A new minimum cost flow algorithm with applications to graph drawing. In S.C. North, editor, Graph Drawing (Proc. GD’ 96), Lecture Notes Comput. Sci. Springer-Verlag, 1997.Google Scholar
  12. [12]
    J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM J. Comput., 2:135–158, 1973.CrossRefMathSciNetGoogle Scholar
  13. [13]
    M. D. Hutton and A. Lubiw. Upward planar drawing of single-source acyclic digraphs. SIAM J. Comput., 25(2):291–311, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    D. Kelly. Fundamentals of planar ordered sets. Discrete Math., 63:197–216, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    X. Lin and P. Eades. Area requirements for drawing hierarchically planar graphs. In G. Di Battista, editor, Graph Drawing (Proc. GD’ 97), volume 1353 of Lecture Notes Comput. Sci., pages 219–229. Springer-Verlag, 1998.Google Scholar
  16. [16]
    T. Nishizeki and N. Chiba. Planar graphs: Theory and algorithms. Ann. Discrete Math., 32, 1988.Google Scholar
  17. [17]
    A. Papakostas. Upward planarity testing of outerplanar dags. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD’ 94, volume 894 of Lecture Notes Comput. Sci., pages 298–306. Springer-Verlag, 1995.Google Scholar
  18. [18]
    E. Reingold and J. Tilford. Tidier drawing of trees. IEEE Trans. Softw. Eng., SE-7(2):223–228, 1981.CrossRefGoogle Scholar
  19. [19]
    R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421–444, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(1):61–79, 1988.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Paola Bertolazzi
    • 1
  • Giuseppe Di Battista
    • 1
  • Walter Didimo
    • 2
  1. 1.IASICNRRomaItaly
  2. 2.Dipartimento di Informatica e AutomazioneUniversità di Roma TreRomaItaly

Personalised recommendations