On Improving Orthogonal Drawings: The 4M-Algorithm

  • Ulrich Fößmeier
  • Carsten Heß
  • Michael Kaufmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1547)


Orthogonal drawings of graphs are widely investigated in the literature and many algorithms have been presented to compute such drawings. Most of these algorithms lead to unpleasant drawings with many bends and a large area. We present methods how to improve the quality of given orthogonal drawings. Our algorithms try to simulate the thinking of a human spectator in order to achieve good results. We also give instructions how to implement the strategies in a way that a good runtime performance can be achieved.


Planar Graph Good Algorithm Graph Drawing Orthogonal Graph Orthogonal Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Biedl, T.C., G. Kant, A Better Heuristic for Orthogonal Graph Drawings, Proc. 2nd European Symp. Alg. (ESA’94), LNCS 855, Springer-Verlag, 1994, 124–135.Google Scholar
  2. 2.
    Biedl, T.C., M. Kaufmann, Area-Efficient Static and Incremental Graph Drawings, Proc. European Symp. Alg. (ESA’97), LNCS 1284, Springer-Verlag, 1997, 37–52.Google Scholar
  3. 3.
    Biedl, T.C., B.P. Madden, I.G. Tollis, The Three-Phase Method: A Unified Approach to Orthogonal Graph Drawing, Proc. Graph Drawing (GD’97), LNCS 1353, Springer-Verlag, 1997, 391–402.CrossRefGoogle Scholar
  4. 4.
    Di Battista, G., A. Garg, G. Liotta, R. Tamassia, E. Tassinari, F. Vargiu, An Experimental Comparison of Three Graph Drawing Algorithms, Proc. ACM Symp. on Comp. Geometry, 1995, 306–315.Google Scholar
  5. 5.
    Fößmeier, U., Orthogonale Visualisierungstechniken für Graphen, Dissertation, Tübingen, 1997 (in German language).Google Scholar
  6. 6.
    Fößmeier, U., G. Kant, M. Kaufmann, 2-Visibility Drawings of Planar Graphs, Proc. Graph Drawing (GD’96), LNCS 1190, Springer-Verlag, 1996, 155–168.Google Scholar
  7. 7.
    Fößmeier, U., M. Kaufmann, Algorithms and Area Bounds for Nonplanar Orthogonal Drawings, Proc. Graph Drawing 97, LNCS 1353, Springer-Verl., 1997, 134–145.CrossRefGoogle Scholar
  8. 8.
    Fößmeier, U., M. Kaufmann, Drawing High-Degree Graphs with Low Bend Numbers, Proc. Graph Drawing (GD’95), LNCS 1027, Springer-Verlag, 1996, 254–266.CrossRefGoogle Scholar
  9. 9.
    Heß, C., Knicksparende Strategien für orthogonale Zeichnungen, Diploma thesis, Tübingen, 1998 (in German language).Google Scholar
  10. 10.
    Hsueh, M.Y., Symbolic layout and compaction of integrated circuits, Ph.D thesis, University of California at Berkeley, 1980.Google Scholar
  11. 11.
    Mehlhorn K., S. Näher, A Faster Compaction Algorithm with Automatic Jog Insertion Proc. 5th MIT Conf. Advanced Research in VLSI, The MIT Press, 1988, 297–314.Google Scholar
  12. 12.
    Lengauer Th., Combinatorial Algorithms for Integrated Circuit Layout, Wiley-Teubner, 1990.Google Scholar
  13. 13.
    Rosenstiehl, P., R.E. Tarjan, Rectilinear Planar Layouts and Bipolar Representations of Planar Graphs, Discrete & Comp. Geometry, vol. 1, no. 4, 1986, 343–353.Google Scholar
  14. 14.
    Papakostas, A., I.G. Tollis, Improved Algorithms and Bounds for Orthogonal Graph Drawing, Proc. Graph Drawing (GD’94), LNCS 894, Springer-Verlag, 1994, 40–51.Google Scholar
  15. 15.
    Tamassia, R., On embedding a Graph in the Grid with the Minimum Number of Bends, SIAM J. Comput., vol. 16, no. 3, 1987, 421–444zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tamassia, R., I.G. Tollis, A Unified Approach to Visibility Representations of Planar Graphs, Discrete & Comp. Geometry, vol. 1, no. 4, 1986, 321–341.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Tamassia, R., I.G. Tollis, Planar Grid Embedding in Linear Time, IEEE Trans. Circuits Syst., vol. CAS-36, no. 9, 1990, 1230–1234.MathSciNetGoogle Scholar
  18. 18.
    Tamassia, R., G. Di Battista, C. Batini, Automatic Graph Drawing and Readability of Diagrams, IEEE Trans. on Systems, Man and Cybern., 18, No. 1, 1988, 61–79.CrossRefGoogle Scholar
  19. 19.
    Tamassia, R., I.G. Tollis, Efficient Embedding of Planar Graphs in Linear Time, Proc. IEEE Intern. Symp. of Circuits and Systems, 1987, 495–498.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Ulrich Fößmeier
    • 1
  • Carsten Heß
    • 1
  • Michael Kaufmann
    • 2
  1. 1.Tom Sawyer SoftwareBerkeley
  2. 2.Wilhelm-Schickard-InstitutUniversität TübingenTübingenGermany

Personalised recommendations