Skip to main content

Spectroscopies on Carbon Nanotubes

  • Chapter
Understanding Carbon Nanotubes

Part of the book series: Lecture Notes in Physics ((LNP,volume 677))

Abstract

In a spectroscopy experiment, radiation is used as a probe of the properties of a system. A typical experiment of spectroscopy is schematized in Fig. 5.1. The source (probe) can be X-rays, laser light (visible and infrared radiations), neutrons, electrons, … . A monochromatic radiation is obtained by using a relevant monochromator device. As long as the response of the material to the radiation is linear, the function which describes the interaction is called the response function and it can be calculated using the linear response model. This response function χ(Q, ω) relates the field associated with the source, E(Q, ω) to the response of the system, R(Q, ω)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Born and K. Huang: Dynamical theory of crystal lattices (Clarendon Press, Oxford 1954)

    MATH  Google Scholar 

  2. A.A. Maradudin, E.W. Montroll, and H.H. Weiss (eds.): Theory of lattice dynamics in the harmonic approximation, Solid State Physics, Supplement 3 (Academic Press, 1963)

    Google Scholar 

  3. G.K. Horton and A.A. Maradudin (eds.): Dynamical properties of solids, vol. 1 (North-Holland Publishing Company, 1974)

    Google Scholar 

  4. P. Lambin and J.P. Gaspard: Phys. Rev. B 26, 4365 (1982) and references therein

    ADS  Google Scholar 

  5. C. Benoit, E. Royer and J.P. Poussigue: J. Phys.: Condens. Matter 4, 3125 (1992)

    ADS  Google Scholar 

  6. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford 1987)

    MATH  Google Scholar 

  7. J.-L. Sauvajol, S. Rols, E. Anglaret and L. Alvarez: Carbon 40, 1697 (2002)

    Google Scholar 

  8. C. Cohen-Tanoudji, B. Diu, F. Laloe: Mécanique Quantique (Hermann Editeurs, Paris 1973)

    Google Scholar 

  9. D.A. Long: The Raman effect (John Wiley and Sons Ltd, Baffins Lane, Chichester 2002)

    Google Scholar 

  10. I.L. Fabelinskii: Usp. Fiz. Nauk. 63, 355 (1957)

    Google Scholar 

  11. R. Loudon: Quantum theory of light (Clarendon Press, Oxford 1973)

    MATH  Google Scholar 

  12. G. Turell: Infrared and Raman spectra of crystals (Academic Press, New York 1972)

    Google Scholar 

  13. H. Poulet and J.-P. Mathieu: Vibrational spectra and symmetry of crystals (Gordon and Breach, New York 1976)

    Google Scholar 

  14. W. Hayes and R. Loudon: Scattering of light by crystals (John Wiley and Sons, New York 1978)

    Google Scholar 

  15. H. Kuzmany: Solid State Spectroscopy (Springer-Verlag, Berlin, Heidelberg 1998)

    Google Scholar 

  16. R.M. Martin and L.M. Falicov: in Light Scattering in Solids I, Topics in Applied Physics vol 8, ed by M. Cardona (Springer-Verlag, Berlin, Heidelberg 1983)

    Google Scholar 

  17. M. Cardona (Ed.): Light Scattering in Solids II-IV, Topics in Applied Physics, (Springer-Verlag, Berlin, Heidelberg 1982, 1983, 1984, 1989)

    Google Scholar 

  18. L.D. Landau and E.M. Lifschitz: Classical Field Theory (Addison-Weslay, Reading, Mass. 1962)

    MATH  Google Scholar 

  19. G. Viliani, R. Dell ánna, O. Pilla and M. Montagna: Phys. Rev. B 37, 6500 (1998)

    Google Scholar 

  20. S. Guha, J. Menéndez, J.B. Page, G.B. Adams: Phys. Rev. B 53, 13106 (1996)

    ADS  Google Scholar 

  21. A. Rahmani, J.-L. Sauvajol, S. Rols and C. Benoit: Phys. Rev. B 66, 125404 (2002)

    ADS  Google Scholar 

  22. M.S. Dresselhaus, P.C. Eklund: Adv. Phys. 49,705 (2000) and references therein

    ADS  Google Scholar 

  23. C. Thomsen, S. Reich: Phys. Rev. Lett. 85, 5214 (2000)

    ADS  Google Scholar 

  24. A.G. Souza Filho, A. Jorio, A.K. Swan et al: Phys. Rev. B 65, 85417 (2002)

    ADS  Google Scholar 

  25. R. Saito, A. Jorio, A.G. Souza Filho et al: Phys. Rev. Lett. 88, 27401 (2002)

    ADS  Google Scholar 

  26. J. Maultzsch, S. Reich, C. Thomsen: Phys. Rev. B 64, 121407(R) (2001)

    ADS  Google Scholar 

  27. J. Maultzsch, S. Reich, C. Thomsen: Phys. Rev. B 65, 233402 (2002)

    ADS  Google Scholar 

  28. H. Ibach, M. Balden, and S. Lehwald: J. Chem. Soc.-Far. Trans. 92, 4771 (1996)

    Google Scholar 

  29. J. Fink: Recent developments in energy-loss spectroscopy. In: Advances in Electronics and Electron Physics, vol 75 (Academic Press, Boston 1989)

    Google Scholar 

  30. J. Daniels, C.V. Festenberg, H. Raether, and K. Zeppenfeld: Optical constants of solids by electron spectroscopy. In: Springer Tracts in Modern Physics, vol 54 (Springer-Verlag, Berlin, Heidelberg, New York 1970) pp 78–135

    Google Scholar 

  31. M. Acheche, C. Colliex, H. Kohl, A. Nourtier, and P. Trebbia: Ultramicroscopy 20, 99 (1986)

    Google Scholar 

  32. A. Howie: Topics in Electron Diffraction and Microscopy of Materials (Inst. of Physics Publications, Bristol UK, 1999)

    Google Scholar 

  33. M. Kociak, L. Henrard, O. Stephan, K. Suenaga, C. Colliex: Phys. Rev. B 61, 13936 (2000)

    ADS  Google Scholar 

  34. M. Kociak, O. Stephan, L. Henrard, V. Charbois, A. Rothschild, R. Tenne, C. Colliex: Phys. Rev. Lett. 87, 075501 (2001)

    ADS  Google Scholar 

  35. O. Stephan, D. Taverna, M. Kociak, K. Suenaga, L. Henrard, and C. Colliex: Phys. Rev. B 66, 155422 (2002)

    ADS  Google Scholar 

  36. B. Rafferty and L.M. Brown: Phys. Rev. B 58,10326 (1998)

    ADS  Google Scholar 

  37. S. Lazar, G.A. Botton, M.Y. Wu, F.D. Tichelaar, H.W. Zandbergen: Ultramicroscopy 96, 535 (2003)

    Google Scholar 

  38. S. Schamm and G. Zanchi: Ultramicroscopy 96, 559 (2003)

    Google Scholar 

  39. R.F. Egerton: Quantitative analysis of the energy-loss spectrum. In: Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd edn (Plenum Press, New York 1986) pp 245–297

    Google Scholar 

  40. R.D. Leapman, P. Rez, and D.F. Mayers: J. Chem. Phys. 72, 1232 (1980)

    ADS  Google Scholar 

  41. R.F. Egerton: Ultramicroscopy 3, 243 (1978)

    Google Scholar 

  42. R.F. Egerton: Electron scattering theory. In: Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd edn (Plenum Press, New York 1986) pp 131–238

    Google Scholar 

  43. R.F. Egerton: Ultramicroscopy, 4, 169 (1979)

    Google Scholar 

  44. H. Castaing and L. Henry: C. R. Acad. Sci. Ser. B 255, 76 (1962)

    Google Scholar 

  45. H. Rose and W. Pejas: Optik 54, 235 (1979)

    Google Scholar 

  46. O.L. Krivanek, C. Mory, M. Tencé, and C. Colliex: Microscopy Microanalysis Microstructures 2, 257 (1991)

    Google Scholar 

  47. C. Jeanguillaume and C. Colliex: Ultramicroscopy, 28, 252 (1989)

    Google Scholar 

  48. C. Colliex, M. Tence, E. Lefevre et al: Mikrochimica Acta 114, 71 (1994)

    Google Scholar 

  49. O.L. Krivanek, A.J. Gubbens, N. Dellby, C.E. Meyer: Microscopy Microanalysis Microstructures 3, 187 (1992)

    Google Scholar 

  50. R.D. Leapman and C.R. Swyt: Ultramicroscopy 26, 393 (1988)

    Google Scholar 

  51. T. Manoubi, M. Tence, M.G. Walls, C. Colliex: Microscopy Microanalysis Microstructures 1, 23 (1990)

    Google Scholar 

  52. M. Tence, M. Quartuccio, C. Colliex: Ultramicroscopy 26, 42 (1995)

    Google Scholar 

  53. O. Stephan, A. Vlandas, R. Arenal de la Concha, A. Loiseau, and S. Trasobares: Electron Microscopy and Analysis 2003, ed by S. McVitie and D. McComb, Conference Series Number 179 (Institute of Physics Publishing, Bristol and Philadelphia 2003) pp 437–442

    Google Scholar 

  54. A.M. Rao, E. Richter, S. Bandow et al: Science 275, 187 (1997)

    Google Scholar 

  55. Results from a research in the Web of Science data base

    Google Scholar 

  56. M.S. Dresselhaus, P.C. Eklund: Adv. Phys. 49 705 (2000)

    ADS  Google Scholar 

  57. M.S. Dresselhaus, G. Dresselhaus, A. Jorio et al: Carbon 40, 2043 (2002)

    Google Scholar 

  58. S. Reich, C. Thomsen, and J. Maultzsch: Carbon nanotubes. Basic Concepts and Physical Properties (Wiley-VCH, Weinheim 2004)

    Google Scholar 

  59. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio: Phys. Rep. 409, 47 (2005)

    ADS  Google Scholar 

  60. H. Kataura, Y. Kumazawa, Y. Maniwa et al: Synth. Metals 103, 2555 (1999)

    Google Scholar 

  61. A. Jorio, R. Saito, J.H. Hafner et al: Phys. Rev. Lett. 86, 1118 (2001)

    ADS  Google Scholar 

  62. S. Kazaoui, N. Minami, R. Jacquemin et al: Phys. Rev. B 60, 13339 (1999)

    ADS  Google Scholar 

  63. J.C. Charlier, P. Lambin: Phys Rev. B 57, R15037 (1998)

    ADS  Google Scholar 

  64. S.D.M. Brown, P. Corrio, A. Marucci et al: Phys. Rev. B 61, 5137 (2000)

    ADS  Google Scholar 

  65. S.D.M. Brown, A. Jorio, P. Corrio et al: Phys. Rev. B 63, 5414 (2001)

    Google Scholar 

  66. L. Alvarez, A. Righi, G. Guillard et al: Chem. Phys. Lett. 316, 186 (2000)

    ADS  Google Scholar 

  67. L. Alvarez, A. Righi, S. Rols et al: Phys. Rev. B 63, 53401 (2001)

    Google Scholar 

  68. A. Jorio, C. Fantini, M. A. Pimenta et al: Phys. Rev. B 71, 75401 (2005)

    ADS  Google Scholar 

  69. H. Telg, J. Maultzsch, S. Reich, F. Hennrich, and C. Thomsen: Phys. Rev. Lett. 93, 177401 (2004)

    ADS  Google Scholar 

  70. C. Fantini, A. Jorio, M. Souza et al: Phys. Rev. Lett. 93, 147406 (2004)

    ADS  Google Scholar 

  71. F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz: Science 308, 838 (2005)

    ADS  Google Scholar 

  72. J. Maultzsch, R. Pomraenke, S. Reich, E. Chang et al: arXiv:cond-mat/0505150 (2005)

    Google Scholar 

  73. S. Rols, A. Righi, A.L. Alvarez et al: Eur. Phys. J. B 18, 201 (2000)

    ADS  Google Scholar 

  74. D. Kahn, J. Ping Lu: Phys. Rev. B 60, 6535 (1999)

    ADS  Google Scholar 

  75. L. Henrard, E. Hernandez, P. Bernier, A. Rubio: Phys. Rev. B 60, 8521 (1999)

    ADS  Google Scholar 

  76. A. Jorio, A.G. Souza Filho, G. Dresselhaus et al: Phys. Rev. B 65, 155412 (2002)

    ADS  Google Scholar 

  77. J.C. Meyer, M. Paillet, T.M. Michel, A. Moreac, A. Neumann, S. Roth, and J.L. Sauvajol: Phys. Rev. Lett. 95, 217401 (2005)

    ADS  Google Scholar 

  78. This is true as far as the laser power density is low. Heating of pristine samples in air at room temperatures can be observed above some tens μWμm-2 (some kWcm-2). Irreversible damages, including combustion, are observed above some hundreds of μWμm-2 (some tens of kWcm-2), which corresponds to heating above 400°C

    Google Scholar 

  79. H. Kuzmany, M. Matus, B. Burger, J. Winter: Adv. Mater. 6, 731 (1994)

    Google Scholar 

  80. M.S. Dresselhaus, G. Dresselhaus: Adv. in Phys. 30, 139 (1981)

    ADS  Google Scholar 

  81. R.S. Lee, H.J. Kim, J.E. Fischer et al: Nature 388, 255 (1997)

    ADS  Google Scholar 

  82. A.M. Rao, P.C. Eklund, S. Bandow et al: Nature 388, 257 (1997)

    ADS  Google Scholar 

  83. N. Bendiab, A. Righi, E. Anglaret et al: Chem. Phys. Lett. 339, 205 (2001)

    Google Scholar 

  84. A. Claye, N. Nemes, A. Janossy, J.E. Fischer: Phys. Rev. B 62, R4845 (2000)

    ADS  Google Scholar 

  85. A. Claye, S. Rahman, J.E. Fischer et al: Chem. Phys. Lett. 333, 16 (2001)

    ADS  Google Scholar 

  86. N. Bendiab, L. Spina, A. Zahab et al: Phys. Rev. B 63, 153407 (2001)

    ADS  Google Scholar 

  87. N. Bendiab, E. Anglaret, J.L. Bantignies et al: Phys. Rev. B 64, 245424 (2001)

    ADS  Google Scholar 

  88. J.L. Sauvajol, N. Bendiab, E. Anglaret, P. Petit: C.R. Physique 4, 1035 (2003)

    ADS  Google Scholar 

  89. N. Bendiab, J.L. Sauvajol, M. Paillet, R. Almairac: Chem. Phys. Lett. 372, 210 (2003)

    ADS  Google Scholar 

  90. N. Bendiab: PhD thesis, Université Montpellier II, 2003

    Google Scholar 

  91. P. Petit, C. Mathis, C. Journet, P. Bernier: Chem. Phys. Lett. 305, 370 (1999); E. Jouguelet, C. Mathis, P. Petit: Chem. Phys. Lett. 318, 561 (2000)

    ADS  Google Scholar 

  92. A. Pénicaud, P. Poulin, A. Derré, E. Anglaret et al: J. Am. Chem. Soc. 127, 8 (2005)

    Google Scholar 

  93. J. Cambedouzou, S. Rols, N. Bendiab et al: Phys. Rev. B 7, 41404 (2005)

    Google Scholar 

  94. C. Bower, S. Suzuki, K. Tanigaki, O. Zhou: Appl. Phys. A 67, 47 (1998)

    ADS  Google Scholar 

  95. L. Duclaux, K. Metenier, J.P. Salvetat et al: Mol. Cryst. Liq. Cryst. 34, 769 (2000)

    Google Scholar 

  96. L. Grigorian, K.A. Williams, S. Fang et al: Phys. Rev. Lett. 80, 5560 (1998)

    ADS  Google Scholar 

  97. Z. Yu and L.E. Brus: J. Phys. Chem. A 104, 10995 (2000)

    Google Scholar 

  98. G.U. Sumanasekera, J.L. Allen, S.L. Fang et al: J. Phys. Chem. B 103, 4292 (1999)

    Google Scholar 

  99. N. Izard, D. Riehl, E. Anglaret: Phys. Rev. B 71, 195417 (2005); N. Izard, PhD thesis, Université Montpellier II (2004)

    ADS  Google Scholar 

  100. M.J. O'Connell, E.E. Eibergen, S.K. Doorn: Nature Mat. 4, 415 (2005)

    ADS  Google Scholar 

  101. L. Kavan, P. Rapta, L. Dunsch: Chem. Phys. Lett. 328, 33 (2000)

    Google Scholar 

  102. M. Stoll; P.M. Rafailov, W. Frenzel, C. Thomsen: Chem. Phys. Lett. 375, 625 (2003)

    ADS  Google Scholar 

  103. A.M. Rao, A. Jorio, M.A. Pimenta et al: Phys. Rev. Lett. 84, 1820 (2000)

    ADS  Google Scholar 

  104. H.H. Gommans, J.W. Alldredge, H. Tashiro et al: J. Appl. Phys. 88, 2509 (2000)

    ADS  Google Scholar 

  105. G.S. Duesberg, I. Loa, M. Bughard et al: Phys. Rev. Lett. 85, 5436 (2000)

    ADS  Google Scholar 

  106. E. Anglaret, A. Righi, J.L. Sauvajol et al: Phys. Rev. B 65, 165426 (2002)

    ADS  Google Scholar 

  107. P. Launois, A. Marucci, B. Vigolo et al: J. Nanoscience Nanotech. 1, 125 (2001)

    Google Scholar 

  108. W. Zhou, J. Vavro, C. Guthy et al: J. of Appl. Phys. 95, 649 (2004)

    ADS  Google Scholar 

  109. J.L. Bahr, J. Yang, D.V. Kosynkin et al: J. Am. Chem. Soc. 123, 6536 (2001)

    Google Scholar 

  110. M. Holzinger, J. Abraham, P. Whelan et al: J. Am. Chem. Soc. 125, 8566 (2003)

    Google Scholar 

  111. D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos: J. Am. Chem. Soc. 125, 3370 (2003)

    Google Scholar 

  112. M.S. Strano, C.A. Dyke, M.L. Usrey et al: Science 301, 1519 (2003)

    ADS  Google Scholar 

  113. R. Krupke, F. Hennrich, H.V. Lohneysen, M.M. Knappes: Science 301, 344 (2003)

    ADS  Google Scholar 

  114. M.S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio: Physics Report 409, 47 (2005)

    ADS  Google Scholar 

  115. A.M. Rao, J. Chen, E. Richter et al: Phys. Rev. Lett. 86, 3895 (2001)

    ADS  Google Scholar 

  116. J. Chen et al: Science 282, 95 (1998); J. Chen et al: J. Phys. Chem. B 105, 2525 (2001)

    ADS  Google Scholar 

  117. C. Jiang, K. Kempa, J. Zhao et al: Phys. Rev. B 66, 161404 (2002)

    ADS  Google Scholar 

  118. K. Kempa: Phys. Rev. B 66, 1945406 (2002)

    ADS  Google Scholar 

  119. M. Paillet, Ph. Poncharal, A. Zahab et al: Phys. Rev. Lett. 94, 237401 (2005)

    ADS  Google Scholar 

  120. J. Maultzsch, S. Reich, U. Schlecht, and C. Thomsen: Phys. Rev. Lett. 91, 087402 (2003)

    ADS  Google Scholar 

  121. M.J. O'Connell, S.M. Bachilo, C.B. Huffman et al: Science 297, 593 (2002)

    ADS  Google Scholar 

  122. S.M. Bachilo, M.S. Strano, C. Kittrell et al: Science 298, 2361 (2002)

    ADS  Google Scholar 

  123. C.L. Kane and E.J. Mele: Phys. Rev. Lett. 90, 207401 (2003)

    ADS  Google Scholar 

  124. J. Kürti, V. Zólyomi, M. Kertesz, and G. Sun: New J. Phys. 5, 125 (2003)

    Google Scholar 

  125. J. Gavillet, J. Thibault, O. Stephan et al: J. Nanosc. and Nanotech., 4, 346 (2004)

    Google Scholar 

  126. M. Isaacson and D. Johnson: Ultramicroscopy 1, 32 (1975)

    Google Scholar 

  127. C. Mory and C. Colliex: Ultramicroscopy 28, 339 (1989)

    Google Scholar 

  128. K. Suenaga, T. Tence, C. Mory et al: Science 290, 2280 (2000)

    ADS  Google Scholar 

  129. R. Lee, J. Gavillet, M. Lamy de la Chapelle et al: Phys. Rev. B 64, 121405 (2001)

    ADS  Google Scholar 

  130. O. Stephan, P.M. Ajayan, C. Colliex et al: Phys. Rev. B 53, 13824 (1996)

    ADS  Google Scholar 

  131. K. Suenaga, E. Sandre, C. Colliex et al: Phys. Rev. B 63, 165408 (2001)

    ADS  Google Scholar 

  132. T. Pichler, M. Knupfer, M.S. Golden et al: Phys. Rev. Lett. 80, 4279 (1998)

    Google Scholar 

  133. F.L. Shyu and M.F. Lin: Phys. Rev. B 62, 8508 (2000)

    ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Sauvajol, JL., Anglaret, E., Rols, S., Stephan, O. (2006). Spectroscopies on Carbon Nanotubes. In: Loiseau, A., Launois, P., Petit, P., Roche, S., Salvetat, JP. (eds) Understanding Carbon Nanotubes. Lecture Notes in Physics, vol 677. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-37586-4_5

Download citation

Publish with us

Policies and ethics