Advertisement

Bakterielle Enterotoxine

  • R. Gerhard
  • I. Just

Zusammenfassung

Bakterien, die den Darm besiedeln und durch Invasion in die Epithelzellen oder Überschreiten der intestinalen Barriere Diarrhö und Gastroenteritiden auslösen, sind bedeutende Krankheitserreger in Industrie- und Entwicklungsländern. Laut Bericht der WHO gab es 1999 aufgrund von Durchfallerkrankungen über 2,2 Mio. Todesfälle weltweit (World Health Report 2000). Wichtige Pathogenitätsfaktoren sind die von den Mikroorganismen gebildeten Enterotoxine, fast ausschließlich Proteine, die für die Entstehung der Darmerkrankungen und Diarrhöen verantwortlich sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aepfelbacher M., Zumbihl R., Ruckdeschel K. et al. (2000) Translocated toxins and modulins of Yersinia. Aktories K. and Just I. Bacterial Protein Toxins. Chapter 28, 669–685Google Scholar
  2. Aktories K. (1994) Clostridial ADP-ribosylating toxins: effects on ATP and GTP binding toxins. MolCell Biol 138, 167–176.Google Scholar
  3. Aktories K., Schmidt G., Just I. (2000) Rho GTPases as targets of bacterial protein toxins. Biol Chem 381, 421–426PubMedCrossRefGoogle Scholar
  4. Alouf J.E., Freer J.H. (eds) (1999) The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press.Google Scholar
  5. Asao T., Kinoshita Y., Kozaki S. et al. (1984) Purification and some properties of Aeromonas hydrophila hemolysin. Infect Immun, 122–127Google Scholar
  6. Beecher D.J., Schoeni J.L., Wong C.L. (1994) Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect Immun 63, 4423–4428Google Scholar
  7. Bhakdi S., Tranum-Jensen J. (1991) Alpha-toxin of Staphylococcus aureus. Microbiol Rev 55, 733–751PubMedGoogle Scholar
  8. Boquet P. (2000) The cytotoxic necrotizing factor 1 (CNF1) from uropathogenic Escherichia coli. Adv Exp Med Biol 485, 45–51PubMedCrossRefGoogle Scholar
  9. Busch C., Aktories K. (2000) Microbial toxins and the glycosylation of Rho family GTPases. Curr Opin Struct Biol 10, 528–535PubMedCrossRefGoogle Scholar
  10. Chopra A.K., Houston W.C. (1999) Enterotoxins in Aeromonas-associated gastroenteritis. Microb Infect 1, 1129–1137.CrossRefGoogle Scholar
  11. Cornelis G.R. (2000) Molecular and cell biology aspects of plague. PNAS 97, 8778–8783PubMedCrossRefGoogle Scholar
  12. Cossart P., Boquet P., Normark S., Rappuoli R. (2000) Cellular Microbiology. ASM PressGoogle Scholar
  13. Delor I., Cornelis G.R. (1992) Role of Yersinia enterocolitica Yst toxin in experimental infection in young rabbits. Infect Immun 60, 4269–4277PubMedGoogle Scholar
  14. Estes M.K., Morris A.P. (1999) A viral enterotoxin. In: Paul, Francis (eds) Mechanisms in the Pathogenesis of Enteric Deseases. New York, Kluwer Academic / Plenum Publishers, 73–82Google Scholar
  15. Fasao A (1999) Intestinal toxins. Curr Opin Gastroenterol 15, 523–528CrossRefGoogle Scholar
  16. Gerhard R., Schmidt G., Hofmann F., Aktories K (1998) Activation of Rho GTPases by Escherichia coli Cytotoxic Necrotizing Factor 1 increases intestinal permeability in Cco-2 cells. Infect Immun 66, 5125–5131PubMedGoogle Scholar
  17. Giannella R.A. (1995) Escherichia coli heat stable enterotoxins, guanylins, and their receptors: what are they and do they do. J Lab Clin Med 125, 173–181PubMedGoogle Scholar
  18. Granum P.E., Granum L., Granum T. (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol Letter 157(2), 223–228CrossRefGoogle Scholar
  19. Hatheway C.L. (1990) Toxigenic Clostridia. Clin Microbiol Rev 3, 66–98PubMedGoogle Scholar
  20. James S.P. (1993) Potential role of superantigens in gastrointestinal desease. Gastroenterology 105, 1569–1571PubMedGoogle Scholar
  21. Just I., Hofmann F., Aktories K. (2000) Molecular Mechanisms of Action of the large clostridial cytotoxins. Aktories K. and Just I. Bacterial Protein Toxins. Springer, Berlin Heidelberg, S. 307–327Google Scholar
  22. Just I, Gerhard R (2004) Large clostridial cytotoxins. Rev Physiol Biochem Pharmacol 152, 23–47PubMedCrossRefGoogle Scholar
  23. Kaper J.B., Fasao A., Trucksis M. (1994) Toxins of Vibrio cholerae. In: Wachsmuth I.K., Blake P.A., Olsvik O. (eds.) Vibrio cholera and cholera. American Society for Microbiology, Washington, D.C., 145–176Google Scholar
  24. Law D. (2000) Virulence factors of Escherichia coli O157 and other Shiga toxin-producing E. coli. J Appl Microbiol 88, 729–745PubMedCrossRefGoogle Scholar
  25. Matthews B.G., Douglas H., Guiney D.G. (1988) Production of a heat stable enterotoxin by Plesiomonas shigelloides. Microb Pathog 5, 207–213PubMedCrossRefGoogle Scholar
  26. Melton-Celsa AR, O’Brian AD (2000) Shiga toxins of Shigella dysenteriae and Escherichia coli. In: Aktories K, Just I (eds) Bacterial Protein Toxins. Springer, Berlin Heidelberg, S. 385–431Google Scholar
  27. Nakao H, Takeda T (2000) Escherichia coli Shiga toxin. J Nat Tox 9, 299–313Google Scholar
  28. O’Loughlin EV, Robins-Browne RM (2001) Effect of Shiga toxin and Shiga-like toxins on eukaryotic cells. Microb Infect 3, 493–507CrossRefGoogle Scholar
  29. Patton WA, Vitale N, Moss J, Vaughan M (2000) Mechanisms of cholera toxin action: ADP-ribosylation factors as stimulators of cholera toxin-catalized ADP-ribosylation and effectors in intracellular vesicular trafficking events. In: Aktories K, Just I (eds) Bacterial Protein Toxins. Springer, Berlin Heidelberg, S. 133–152Google Scholar
  30. Popoff MR, Milward FW, Bancillon B, Boquet P (1988) Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56, 2299–2306PubMedGoogle Scholar
  31. Pothoulakis C., Lamont JT (2001) Microbes and Microbial Toxins: Paradigms for Microbial-Mucosal Interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am J of Physiol 280, G178–G183Google Scholar
  32. Rupnik, M, Dupuy B, Fairweather NF et al. (2005) Revised nomenclature of Clostridium difficile toxins and associated genes. J Med Microbiol 54, 113–117PubMedCrossRefGoogle Scholar
  33. Sears CL, Kaper JB (1996) Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol Rev 60, 167–215PubMedGoogle Scholar
  34. Sukhan A (2000) The invasion-associated type III secretion system of Salmonella typhimurium: common and unique features. Cellular and Molecular Lif Sci 57, 1033–1049CrossRefGoogle Scholar
  35. Wassenaar TM (1997) Toxin production by Campylobacter spp. Clinical Microbiol Rev 10, 466–476Google Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2006

Authors and Affiliations

  • R. Gerhard
    • 1
  • I. Just
    • 1
  1. 1.Institut für ToxikologieMedizinische Hochschule HannoverHannover

Personalised recommendations