Advertisement

From Normal to Anomalous Deterministic Diffusion

  • Roberto Artuso
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 618)

Abstract

These lecture notes illustrate some features of deterministic transport in chaotic systems. The subject has witnessed an impressive amount of work in the last thirty years, and our review is not meant to be exhaustive, but rather focus on some unifying techniques by which the problem can be tackled, pointing out difficulties and open problems.

We start by dealing with the case of hyperbolic systems where typically normal diffusion is observed (even though actual calculation of transport coefficients may be exceedingly difficult), while the second part of the notes deals with weakly chaotic systems, where long trappings near regular phase-space regions may induce anomalies in diffusive properties. Examples of analytic calculations are given in the framework of cycle expansions, a general technique for getting chaotic averages.

Keywords

Periodic Orbit Chaotic System Zeta Function Periodic Point Piecewise Linear Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klages, R., Dorfman, J.R. (1995): Simple maps with fractal diffusion coefficient. Phys. Rev. Lett., 74, 387–390CrossRefADSGoogle Scholar
  2. 2.
    Artuso R. (1991): Diffusive dynamics and periodic orbits of dynamical systems. Phys. Lett., A 160, 528–530ADSMathSciNetGoogle Scholar
  3. 3.
    Cvitanović, P., Gaspard, P., Schreiber T. (1992): Investigation of the Lorentz Gas in terms of periodic orbits. CHAOS, 2, 85–90CrossRefADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    Cvitanović, P., Eckmann, J.-P., Gaspard P. (1995): Transport properties of the Lorentz gas in terms of periodic orbits. Chaos, Solitons and Fractals, 6, 113–120CrossRefzbMATHMathSciNetADSGoogle Scholar
  5. 5.
    Dana, I. (1989): Hamiltonian transport on unstable periodic orbits. Physica, D 39, 205–230ADSMathSciNetGoogle Scholar
  6. 6.
    Vance, W.N. (1992): Unstable periodic orbits and transport properties of nonequilibrium steady states. Phys. Rev. Lett., 96, 1356–1359CrossRefADSGoogle Scholar
  7. 7.
    Artuso, R., Aurell, E., Cvitanović, P. (1990): Recycling of strange sets I: Cycle expansions. Nonlinearity 3, 325–360CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Artuso, R., Aurell, E., Cvitanović, P. (1990): Recycling of strange sets II: Applications. Nonlinearity 3, 361–386CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G. (2001): Classical and Quantum Chaos. http://www.nbi.dk/ChaosBook/, Niels Bohr Institute, CopenhagenGoogle Scholar
  10. 10.
    Baladi, V. (1995): Dynamical zeta functions. In: Branner, B., Hjorth (eds) Proceedings of the NATO ASI Real and Complex Dynamical Systems. Kluwer Academic Publishers DordrechtGoogle Scholar
  11. 11.
    Devaney, R.L. (1987): An Introduction to Chaotic Dynamical Systems. Addison-Wesley Reading MAGoogle Scholar
  12. 12.
    Hansen, K.T. (1994): Symbolic Dynamics in Chaotic Systems. Ph.D. thesis, University of Oslo http://www.nbi.dk/CATS/papers/khansen/thesis/thesis.html
  13. 13.
    Artuso, R., Strepparava, R. (1997): Recycling diffusion in sawtooth and cat maps. Phys. Lett. A236 469–475ADSMathSciNetGoogle Scholar
  14. 14.
    Arnol'd V.I., Avez, A. (1967): Problèmes Ergodiques de la Mécanique Classique. Gauthier-Villars PariszbMATHGoogle Scholar
  15. 15.
    Rugh, H.H. (1992): The Correlation Spectrum for Hyperbolic Analytic Maps. Nonlinearity 5, 1237–1263zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Percival, I., Vivaldi, F. (1987): A linear code for the sawtooth and cat maps. Physica 27D, 373–386ADSMathSciNetGoogle Scholar
  17. 17.
    Bird, N., Vivaldi, F. (1988): Periodic orbits of the sawtooth maps. Physica D30, 164–176ADSMathSciNetGoogle Scholar
  18. 18.
    Coxeter, H.S.M. (1948): Regular Polytopes. Methuen LondonzbMATHGoogle Scholar
  19. 19.
    Lichtenberg, A.J., Lieberman, M.A. (1982): Regular and stochastic motion. Springer New YorkGoogle Scholar
  20. 20.
    Cary, J.R., Meiss, J.D. (1981): Rigorously diffusive deterministic map. Phys. Rev. A24, 2664–2668ADSMathSciNetGoogle Scholar
  21. 21.
    Pomeau, Y., Manneville, P.(1980): Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Gaspard, P., Wang, X.-J. (1988): Sporadicity: between periodic and chaotic dynamical behavior. Proc. Natl. Acad. Sci. U.S.A. 85 4591–4595zbMATHMathSciNetGoogle Scholar
  23. 23.
    Feller, W. (1966): An introduction to probability theory and applications, Vol. II. Wiley New YorkzbMATHGoogle Scholar
  24. 24.
    Geisel, T., Thomae, S. (1984): Anomalous diffusion in intermittent chaotic systems. Phys. Rev. Lett. 52 1936–1939CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Artuso, R., Casati G., Lombardi, R. (1993): Periodic orbit theory of anomalous diffusion. Phys. Rev. Lett. 71 62–64CrossRefADSGoogle Scholar
  26. 26.
    Dahlqvist, P. (1995): Approximate zeta functions for the Sinai billiard and related systems. Nonlinearity 8, 11–28zbMATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Baladi, V., Eckmann, J.-P., Ruelle, D. (1989): Resonances for intermittent systems. Nonlinearity 2, 119–135zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Dahlqvist, P., Artuso, R. (1996): On the decay of correlations in the Sinai billiard with infinite horizon. Phys. Lett. A 219, 212–216ADSMathSciNetGoogle Scholar
  29. 29.
    Procaccia, I., Schuster, H. (1983): Functional renormalization group theory of universal 1/f noise in dynamical systems. Phys. Rev. A 28, 1210–1212ADSMathSciNetGoogle Scholar
  30. 30.
    Dahlqvist, P. (1996): Lyapunov exponents and anomalous diffusion of a Lorentz gas with infinite horizon. J. Stat. Phys. 84 773–795CrossRefADSGoogle Scholar
  31. 31.
    Karney, C.F.F. (1983): Long-time correlations in the stochastic regime. Physica D 8, 360–380ADSMathSciNetGoogle Scholar
  32. 32.
    Chirikov, B.V., Shepelyansky, D.L. (1984): Correlation properties of dynamical chaos in Hamiltonian systems. Physica D 13, 395–400ADSMathSciNetGoogle Scholar
  33. 33.
    Artuso, R. (1999): Correlation decay and return time statistics. Physica 131 68–77zbMATHMathSciNetGoogle Scholar
  34. 34.
    Young, L.-S. (1999): Recurrence times and rates of mixing. Israel J. Math. 110 153–188zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Bunimovich, L.A. (1985): Decay of correlations in dynamical systems with chaotic behavior. Sov. Phys. JETP 62 842–852Google Scholar
  36. 36.
    Bleher, P.M. (1992): Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon. J. Stat. Phys. 66 315–373zbMATHCrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Artuso, R., Casati, G., Guarneri, I. (1996): Numerical experiments on billiards. J. Stat. Phys. 83 145–166zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Roberto Artuso
    • 1
  1. 1.Centre for Nonlinear and Complex Systems and Dipartimento di Scienze Chimiche FisicheChimiche e Matematiche and I.N.F.M. Sezione di ComoComoItaly

Personalised recommendations