Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems

  • Arnd Bäcker
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 618)


We give an introduction to some of the numerical aspects in quantum chaos. The classical dynamics of two-dimensional area-preserving maps on the torus is illustrated using the standard map and a perturbed cat map. The quantization of area-preserving maps given by their generating function is discussed and for the computation of the eigenvalues a computer program in Python is presented. We illustrate the eigenvalue distribution for two types of perturbed cat maps, one leading to COE and the other to CUE statistics. For the eigenfunctions of quantum maps we study the distribution of the eigenvectors and compare them with the corresponding random matrix distributions. The Husimi representation allows for a direct comparison of the localization of the eigenstates in phase space with the corresponding classical structures. Examples for a perturbed cat map and the standard map with different parameters are shown.

Billiard systems and the corresponding quantum billiards are another important class of systems (which are also relevant to applications, for example in mesoscopic physics). We provide a detailed exposition of the boundary integral method, which is one important method to determine the eigenvalues and eigenfunctions of the Helmholtz equation. We discuss several methods to determine the eigenvalues from the Fredholm equation and illustrate them for the stadium billiard. The occurrence of spurious solutions is discussed in detail and illustrated for the circular billiard, the stadium billiard, and the annular sector billiard.

We emphasize the role of the normal derivative function to compute the normalization of eigenfunctions, momentum representations or autocorrelation functions in a very efficient and direct way. Some examples for these quantities are given and discussed.


Neumann Boundary Condition Helmholtz Equation Numerical Aspect Quantum Chaos Boundary Integral Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Meiss: Symplectic maps, variational principles, and transport, Rev. Mod. Phys. 64 (1992) 795–848.CrossRefADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    J.-M. Strelcyn: The “coexistence problem” for conservative dynamical systems: a review, Colloquium mathematicum 62 (1991) 331–345.zbMATHMathSciNetGoogle Scholar
  3. 3.
    P. Duarte: Plenty of elliptic islands for the standard family of area preserving maps, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 359–409.zbMATHMathSciNetGoogle Scholar
  4. 4.
    A. Giorgilli and V. F. Lazutkin: Some remarks on the problem of ergodicity of the standard map, Phys. Lett. A 272 (2000) 359–367.CrossRefADSzbMATHMathSciNetGoogle Scholar
  5. 5.
    V. F. Lazutkin: A remark on “Some remarks on the problem of ergodicity of the standard map”, preprint, mp-arc 00-159 (2000).Google Scholar
  6. 6.
    M. Basilio de Matos and A. M. Ozorio de Almeida: Quantization of Anosov maps, Annals of Physics 237 (1993) 46–65.Google Scholar
  7. 7.
    P. A. Boasman and J. P. Keating: Semiclassical asymptotics of perturbed cat maps, Proc. R. Soc. London Ser. A 449 (1995) 629–653.Google Scholar
  8. 8.
    V. I. Arnold and A. Avez: Ergodic Problems of Classical Mechanics, Benjamin, New York, (1968).Google Scholar
  9. 9.
    M. V. Berry, N. L. Balazs, M. Tabor and A. Voros: Quantum maps, Annals of Physics 122 (1979) 26–63.CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    J. H. Hannay and M. V. Berry: Quantization of linear maps on a torus — Fresnel diffraction by periodic grating, Physica D 1 (1980) 267–290.CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    N. L. Balazs and A. Voros: The quantized Baker’s transformation, Ann. Phys. 190 (1989) 1–31.zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    M. Saraceno: Classical structures in the quantized baker transformation, Ann. Phys. 199 (1990) 37–60.zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    M. Degli Esposti: Quantization of the orientation preserving automorphisms of the torus, Ann. Inst. H. Poincaré Phys. Théor. 58 (1993) 3 323–341.zbMATHMathSciNetGoogle Scholar
  14. 14.
    M. Degli Esposti, S. Graffi and S. Isola: Classical limit of the quantized hyperbolic toral automorphisms, Commun. Math. Phys. 167 (1995) 471–507.zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    S. De Bièvre, M. Degli Esposti and R. Giachetti: Quantization of a class of piecewise affine transformations on the torus., Commun. Math. Phys. 176 (1996) 73–94.zbMATHCrossRefADSGoogle Scholar
  16. 16.
    S. Zelditch: Index and dynamics of quantized contact transformations., Ann. Inst. Fourier 47 (1997) 305–363.zbMATHMathSciNetGoogle Scholar
  17. 17.
    G. Haag: Quantisierte chaotische Abbildungen, Diploma Thesis, Abteilung Theoretische Physik, Universität Ulm (1999).Google Scholar
  18. 18.
    S. De Bièvre: Quantum chaos: a brief first visit in: Second Summer School in Analysis and Mathematical Physics: Topics in Analysis: Harmonic, Complex, Nonlinear and Quantization, S. Perez-Esteva and C. Villegas-Blas (eds.), Contemporary Mathematics 289 (2001).Google Scholar
  19. 19.
    T. Prosen and M. Robnik: Numerical demonstration of the Berry-Robnik level spacing distribution, J. Phys. A 27 (1994) L459–L466, corrigendum: ibid. 27 (1994) 6633-6633.zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. 21.
    The Numerical Algorithms Group (NAG),
  21. 23.
    R. Ketzmerick, K. Kruse and T. Geisel: Efficient diagonalization of kicked quantum systems, Physica D 131 (1999) 247–253.zbMATHCrossRefADSGoogle Scholar
  22. 24.
    ATLAS, (Automatically Tuned Linear Algebra Software).
  23. 25.
    O. Bohigas, M.-J. Giannoni and C. Schmit: Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984) 1–4.CrossRefADSzbMATHMathSciNetGoogle Scholar
  24. 26.
    M. V. Berry and M. Tabor: Level clustering in the regular spectrum, Proc. R. Soc. London Ser. A 356 (1977) 375–394.Google Scholar
  25. 27.
    J. P. Keating: Asymptotic properties of the periodic orbits of the cat maps, Nonlinearity 4 (1991) 277–307.zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. 28.
    J. P. Keating: The cat maps: Quantum mechanics and classical motion, Nonlinearity 4 (1991) 309–341.zbMATHCrossRefADSMathSciNetGoogle Scholar
  27. 29.
    F. Mezzadri: Boundary conditions for torus maps and spectral statistics, Ph.D. thesis, School of Mathematics, University of Bristol, (1999).Google Scholar
  28. 30.
    J. P. Keating and F. Mezzadri: Pseudo-symmetries of Anosov maps and spectral statistics, Nonlinearity 13 (2000) 747–775.zbMATHCrossRefADSMathSciNetGoogle Scholar
  29. 31.
    T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey and S. S. M. Wong: Random-matrix physics: spectrum and strength fluctuations, Rev. Mod. Phys. 53 (1981) 385–479.CrossRefADSMathSciNetGoogle Scholar
  30. 32.
    F. Haake: Quantum Signatures of Chaos, Springer-Verlag, Berlin, 2nd edn., (2001).zbMATHGoogle Scholar
  31. 33.
    C. E. Porter and R. G. Thomas: Fluctuations of Nuclear Reaction Widths, Phys. Rev. 104 (1956) 483–491.CrossRefADSGoogle Scholar
  32. 34.
    P. Kurlberg and Z. Rudnick: Value distribution for eigenfunctions of desymmetrized quantum maps, Internat. Math. Res. Notices (2001) 995–1002.Google Scholar
  33. 35.
    B. Eckhardt: Exact eigenfunctions for a quantised map, J. Phys. A 19 (1986) 10 1823–1831.CrossRefADSzbMATHMathSciNetGoogle Scholar
  34. 36.
    A. Bouzouina and S. De Biévre: Equipartition of the eigenfunctions of quantized ergodic maps on the torus, Commun. Math. Phys. 178 (1996) 83–105.zbMATHCrossRefADSGoogle Scholar
  35. 37.
    S. De Bièvre and M. Degli Esposti: Egorov theorems and equidistribution of eigenfunctions for the quantized sawtooth and baker maps, Ann. Inst. Henri Poincaré, Physique Théorique 69 (1996) 1–30.Google Scholar
  36. 38.
    A. Bäcker and H. R. Dullin: Symbolic dynamics and periodic orbits for the cardioid billiard, J. Phys. A 30 (1997) 1991–2020.zbMATHCrossRefADSMathSciNetGoogle Scholar
  37. 39.
    H. P. Baltes and E. R. Hilf: Spectra of Finite Systems, Bibliographisches Institut, Mannheim, Wien, Zürich, (1976).zbMATHGoogle Scholar
  38. 40.
    M. Sieber, U. Smilansky, S. C. Creagh and R. G. Littlejohn: Non-generic spectral statistics in the quantized stadium billiard, J. Phys. A 26 (1993) 6217–6230.zbMATHCrossRefADSMathSciNetGoogle Scholar
  39. 41.
    A. Bäcker, F. Steiner and P. Stifter: Spectral statistics in the quantized cardioid billiard, Phys. Rev. E 52 (1995) 2463–2472.CrossRefADSGoogle Scholar
  40. 42.
    A. Bäcker and F. Steiner: Quantum chaos and quantum ergodicity, in Ergodic Theory, Analysis and Efficient Simulation of Dynamical Systems, B. Fiedler (ed.), 717–752, Springer-Verlag Berlin/Heidelberg (2001).Google Scholar
  41. 43.
    J. R. Kuttler and V. G. Sigilito: Eigenvalues of the Laplacian in two dimensions, SIAM Review 26 (1984) 163–193.zbMATHCrossRefMathSciNetGoogle Scholar
  42. 44.
    E. J. Heller: Wavepacket dynamics and quantum chaology, in: Proceedings of the 1989 Les Houches School on Chaos and Quantum Physics (Eds. M.-J. Giannoni, A. Voros and J. Zinn Justin), North-Holland, Amsterdam, (1991).Google Scholar
  43. 45.
    B. Li and M. Robnik: Statistical properties of high-lying chaotic eigenstates, J. Phys. A 27 (1994) 5509–5523.zbMATHCrossRefADSMathSciNetGoogle Scholar
  44. 46.
    E. Doron and U. Smilansky: Chaotic Spectroscopy, Chaos 2 (1992) 117–124.CrossRefADSGoogle Scholar
  45. 47.
    B. Dietz and U. Smilansky: A scattering approach to the quantization of billiards — The inside-outside duality, Chaos 3 (1993) 581–590.zbMATHCrossRefADSMathSciNetGoogle Scholar
  46. 48.
    H. Schanz and U. Smilansiky: Quantization of Sinai’s billiard — a scattering approach, Chaos, Solitons and Fractals 5 (1995) 1289–1309.zbMATHCrossRefMathSciNetADSGoogle Scholar
  47. 49.
    E. Vergini and M. Saraceno: Calculation of highly excited states of billiards, Phys. Rev. E 52 (1995) 2204–2207.CrossRefADSGoogle Scholar
  48. 50.
    A. J. Burton and G. F. Miller: The application of integral equation methods to the numerical solution of some exterior boundary-value problems, Proc. R. Soc. London Ser. A 323 (1971) 201–210.Google Scholar
  49. 51.
    R. E. Kleinman and G. F. Roach: Boundary integral equations for the three dimensional Helmholtz equation, SIAM Rev. 16 (1974) 214–236.zbMATHCrossRefMathSciNetGoogle Scholar
  50. 52.
    R. J. Riddel Jr.: Boundary-distribution solution of the Helmholtz equation for a region with corners, J. Comp. Phys. 31 (1979) 21–41.CrossRefADSGoogle Scholar
  51. 53.
    R. J. Riddel Jr.: Numerical solution of the Helmholtz equation for twodimensional polygonal regions, J. Comp. Phys. 31 (1979) 42–59.CrossRefADSGoogle Scholar
  52. 54.
    P. A. Martin: Acoustic scattering and radiation problems and the null-field method, Wave Motion (1982) 391–408.Google Scholar
  53. 55.
    M. V. Berry and M. Wilkinson: Diabolical points in the spectra of triangles, Proc. R. Soc. London Ser. A 392 (1984) 15–43.Google Scholar
  54. 56.
    M. Sieber and F. Steiner: Quantum chaos in the hyperbola billiard, Phys. Lett. A 148 (1990) 415–419.CrossRefADSMathSciNetGoogle Scholar
  55. 57.
    D. Biswas and S. Jain: Quantum description of a pseudointegrable system: the π/3—rhombus billiard, Phys. Rev. A 42 (1990) 3170–3185.CrossRefADSGoogle Scholar
  56. 58.
    P. A. Boasmann: Semiclassical Accuracy for Billiards, Ph.D. thesis, H. H. Wills Physics Laboratory, Bristol, (1992).Google Scholar
  57. 59.
    P. A. Boasmann: Semiclassical accuracy for billiards, Nonlinearity 7 (1994) 485–537.CrossRefADSMathSciNetGoogle Scholar
  58. 60.
    R. Aurich and F. Steiner: Statistical properties of highly excited quantum eigenstates of a strongly chaotic system, Physica D 64 (1993) 185–214.zbMATHCrossRefADSMathSciNetGoogle Scholar
  59. 61.
    C. Pisani: Exploring periodic orbit expansions and renormalisation with the quantum triangular billiard, Ann. Physics 251 (1996) 208–265.zbMATHCrossRefADSMathSciNetGoogle Scholar
  60. 62.
    I. Kosztin and K. Schulten: Boundary integral method for stationary states of two-dimensional quantum systems, Int. J. Mod. Phys. C 8 (1997) 293–325.zbMATHCrossRefADSMathSciNetGoogle Scholar
  61. 63.
    B. Li, M. Robnik and B. Hu: Relevance of chaos in numerical solutions of quantum billiards, Phys. Rev. E 57 (1998) 4095–4105.CrossRefADSGoogle Scholar
  62. 64.
    M. Sieber: Billiard systems in three dimensions: the boundary integral equation and the trace formula, Nonlinearity 11 (1998) 6 1607–1623.zbMATHCrossRefADSMathSciNetGoogle Scholar
  63. 65.
    K. Hornberger and U. Smilansky: The boundary integral method for magnetic billiards, J. Phys. A 33 (1999) 2829–2855.CrossRefADSMathSciNetGoogle Scholar
  64. 66.
    R. Aurich and J. Marklof: Trace formulae for three-dimensional hyperbolic lattices and application to a strongly chaotic tetrahedral billiard, Physica D 92 (1996) 101–129.zbMATHCrossRefMathSciNetGoogle Scholar
  65. 67.
    H. Primack and U. Smilansky: Quantization of the 3-dimensional Sinai billiard, Phys. Rev. Lett. 74 (1995) 4831–4834.CrossRefADSGoogle Scholar
  66. 68.
    G. Steil: Eigenvalues of the Laplacian for Bianchi groups, in: Emerging applications of number theory (Minneapolis, MN, 1996), 617–641, Springer, New York, (1999).Google Scholar
  67. 69.
    T. Prosen: Quantization of generic chaotic 3D billiard with smooth boundary I: energy level statistic, Phys. Lett. A 233 (1997) 323–331.zbMATHCrossRefADSMathSciNetGoogle Scholar
  68. 70.
    T. Prosen: Quantization of generic chaotic 3D billiard with smooth boundary II: structure of high-lying eigenstates, Phys. Lett. A 233 (1997) 332–342.zbMATHCrossRefADSMathSciNetGoogle Scholar
  69. 71.
    R. D. Ciskowski and C. Brebbia, eds.: Boundary Element Methods in Acoustics. Computational Mechanics Publications and Elsevier Applied Science, (1991).Google Scholar
  70. 72.
    E. B. Bogomolny: Semiclassical quantization of multidimensional systems, Nonlinearity 5 (1992) 805–866.zbMATHCrossRefADSMathSciNetGoogle Scholar
  71. 73.
    T. Harayama and A. Shudo: Zeta function derived from the boundary element method, Phys. Lett. A 165 (1992) 417–426.CrossRefADSMathSciNetGoogle Scholar
  72. 74.
    B. Burmeister: Korrekturen zur Gutzwillerschen Spurformel für Quantenbillards, Diploma Thesis, II. Institut für Theoretische Physik, Universität Hamburg (1995).Google Scholar
  73. 75.
    M. Sieber, N. Pavloff and C. Schmit: Uniform approximation for diffractive contributions to the trace formula in billiard systems, Phys. Rev. E 55 (1997) 2279–2299.CrossRefADSMathSciNetGoogle Scholar
  74. 76.
    B. Burmeister and F. Steiner: Exact trace formula for quantum billiards, unpublished (1995).Google Scholar
  75. 77.
    S. Tasaki, T. Harayama and A. Shudo: Interior Dirichlet eigenvalue problem, exterior Neumann scattering problem, and boundary element method for quantum billiards, Phys. Rev. E 56 (1997) R13–R16.CrossRefADSMathSciNetGoogle Scholar
  76. 78.
    J.-P. Eckmann and C.-A. Pillet: Zeta functions with Dirichlet and Neumann boundary conditions for exterior domains, Helv. Phys. Acta 70 (1997) 44–65.zbMATHMathSciNetGoogle Scholar
  77. 79.
    R. Aurich: private communication.Google Scholar
  78. 80.
    M. Robnik: Quantising a generic family of billiards with analytic boundaries, J. Phys. A 17 (1984) 1049–1074.CrossRefADSzbMATHMathSciNetGoogle Scholar
  79. 81.
    T. Prosen and M. Robnik: Energy level statistics and localization in sparsed banded random matrix ensembles, J. Phys. A 26 (1993) 1105–1114.zbMATHCrossRefADSGoogle Scholar
  80. 82.
    M. Abramowitz and I. A. Stegun (eds.): Pocketbook of Mathematical Functions, Verlag Harri Deutsch, Thun — Frankfurt/Main, abridged edn., (1984).Google Scholar
  81. 83.
    A. Sommerfeld: Vorlesungen über Theoretische Physik, Band VI: Partielle Differentialgleichungen der Physik, Harri Deutsch, Thun, (1984).Google Scholar
  82. 84.
    T. Hesse: Semiklassische Untersuchung zwei — und dreidimensionaler Billardsysteme, Ph.D. thesis, Abteilung Theoretische Physik, Universität Ulm, (1997).Google Scholar
  83. 85.
    K. Życzkowski: Classical and quantum billiards, integrable, nonintegrable, and pseudo-integrable, Acta Physica Polonica B 23 (1992) 245–270.MathSciNetGoogle Scholar
  84. 86.
    A. Bäcker and R. Schubert: Chaotic eigenfunctions in momentum space, J. Phys. A 32 (1999) 4795–4815.zbMATHCrossRefADSMathSciNetGoogle Scholar
  85. 87.
    J. M. Tualle and A. Voros: Normal modes of billiards portrayed in the stellar (or nodal) representation, Chaos, Solitons and Fractals 5 (1995) 1085–1102.zbMATHCrossRefMathSciNetADSGoogle Scholar
  86. 88.
    F. P. Simonotti, E. Vergini and M. Saraceno: Quantitative study of scars in the boundary section of the stadium billiard, Phys. Rev. E 56 (1997) 3859–3867.CrossRefADSMathSciNetGoogle Scholar
  87. 89.
    A. Bäcker and R. Schubert: Autocorrelation function of eigenstates in chaotic and mixed systems, J. Phys. A 35 (2002) 539–564.zbMATHCrossRefADSMathSciNetGoogle Scholar
  88. 90.
    E. J. Heller: Bound-state eigenfunctions of classically chaotic Hamiltonian systems: Scars of periodic orbits, Phys. Rev. Lett. 53 (1984) 1515–1518.CrossRefADSMathSciNetGoogle Scholar
  89. 91.
  90. 92.
    Numerical Python (NumPy),
  91. 93.
  92. 94.

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Arnd Bäcker
    • 1
  1. 1.Abteilung Theoretische Physik Universität UlmUlmGermany

Personalised recommendations