Skip to main content

Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems

  • Conference paper
  • First Online:
The Mathematical Aspects of Quantum Maps

Part of the book series: Lecture Notes in Physics ((LNP,volume 618))

Abstract

We give an introduction to some of the numerical aspects in quantum chaos. The classical dynamics of two-dimensional area-preserving maps on the torus is illustrated using the standard map and a perturbed cat map. The quantization of area-preserving maps given by their generating function is discussed and for the computation of the eigenvalues a computer program in Python is presented. We illustrate the eigenvalue distribution for two types of perturbed cat maps, one leading to COE and the other to CUE statistics. For the eigenfunctions of quantum maps we study the distribution of the eigenvectors and compare them with the corresponding random matrix distributions. The Husimi representation allows for a direct comparison of the localization of the eigenstates in phase space with the corresponding classical structures. Examples for a perturbed cat map and the standard map with different parameters are shown.

Billiard systems and the corresponding quantum billiards are another important class of systems (which are also relevant to applications, for example in mesoscopic physics). We provide a detailed exposition of the boundary integral method, which is one important method to determine the eigenvalues and eigenfunctions of the Helmholtz equation. We discuss several methods to determine the eigenvalues from the Fredholm equation and illustrate them for the stadium billiard. The occurrence of spurious solutions is discussed in detail and illustrated for the circular billiard, the stadium billiard, and the annular sector billiard.

We emphasize the role of the normal derivative function to compute the normalization of eigenfunctions, momentum representations or autocorrelation functions in a very efficient and direct way. Some examples for these quantities are given and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Meiss: Symplectic maps, variational principles, and transport, Rev. Mod. Phys. 64 (1992) 795–848.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. J.-M. Strelcyn: The “coexistence problem” for conservative dynamical systems: a review, Colloquium mathematicum 62 (1991) 331–345.

    MATH  MathSciNet  Google Scholar 

  3. P. Duarte: Plenty of elliptic islands for the standard family of area preserving maps, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 359–409.

    MATH  MathSciNet  Google Scholar 

  4. A. Giorgilli and V. F. Lazutkin: Some remarks on the problem of ergodicity of the standard map, Phys. Lett. A 272 (2000) 359–367.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. V. F. Lazutkin: A remark on “Some remarks on the problem of ergodicity of the standard map”, preprint, mp-arc 00-159 (2000).

    Google Scholar 

  6. M. Basilio de Matos and A. M. Ozorio de Almeida: Quantization of Anosov maps, Annals of Physics 237 (1993) 46–65.

    Google Scholar 

  7. P. A. Boasman and J. P. Keating: Semiclassical asymptotics of perturbed cat maps, Proc. R. Soc. London Ser. A 449 (1995) 629–653.

    Google Scholar 

  8. V. I. Arnold and A. Avez: Ergodic Problems of Classical Mechanics, Benjamin, New York, (1968).

    Google Scholar 

  9. M. V. Berry, N. L. Balazs, M. Tabor and A. Voros: Quantum maps, Annals of Physics 122 (1979) 26–63.

    Article  ADS  MathSciNet  Google Scholar 

  10. J. H. Hannay and M. V. Berry: Quantization of linear maps on a torus — Fresnel diffraction by periodic grating, Physica D 1 (1980) 267–290.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. N. L. Balazs and A. Voros: The quantized Baker’s transformation, Ann. Phys. 190 (1989) 1–31.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. M. Saraceno: Classical structures in the quantized baker transformation, Ann. Phys. 199 (1990) 37–60.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. M. Degli Esposti: Quantization of the orientation preserving automorphisms of the torus, Ann. Inst. H. Poincaré Phys. Théor. 58 (1993) 3 323–341.

    MATH  MathSciNet  Google Scholar 

  14. M. Degli Esposti, S. Graffi and S. Isola: Classical limit of the quantized hyperbolic toral automorphisms, Commun. Math. Phys. 167 (1995) 471–507.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. S. De Bièvre, M. Degli Esposti and R. Giachetti: Quantization of a class of piecewise affine transformations on the torus., Commun. Math. Phys. 176 (1996) 73–94.

    Article  MATH  ADS  Google Scholar 

  16. S. Zelditch: Index and dynamics of quantized contact transformations., Ann. Inst. Fourier 47 (1997) 305–363.

    MATH  MathSciNet  Google Scholar 

  17. G. Haag: Quantisierte chaotische Abbildungen, Diploma Thesis, Abteilung Theoretische Physik, Universität Ulm (1999).

    Google Scholar 

  18. S. De Bièvre: Quantum chaos: a brief first visit in: Second Summer School in Analysis and Mathematical Physics: Topics in Analysis: Harmonic, Complex, Nonlinear and Quantization, S. Perez-Esteva and C. Villegas-Blas (eds.), Contemporary Mathematics 289 (2001).

    Google Scholar 

  19. T. Prosen and M. Robnik: Numerical demonstration of the Berry-Robnik level spacing distribution, J. Phys. A 27 (1994) L459–L466, corrigendum: ibid. 27 (1994) 6633-6633.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. The Numerical Algorithms Group (NAG), http://www.nag.co.uk/.

  21. R. Ketzmerick, K. Kruse and T. Geisel: Efficient diagonalization of kicked quantum systems, Physica D 131 (1999) 247–253.

    Article  MATH  ADS  Google Scholar 

  22. ATLAS, http://math-atlas.sourceforge.net/ (Automatically Tuned Linear Algebra Software).

  23. O. Bohigas, M.-J. Giannoni and C. Schmit: Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984) 1–4.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. M. V. Berry and M. Tabor: Level clustering in the regular spectrum, Proc. R. Soc. London Ser. A 356 (1977) 375–394.

    Google Scholar 

  25. J. P. Keating: Asymptotic properties of the periodic orbits of the cat maps, Nonlinearity 4 (1991) 277–307.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. J. P. Keating: The cat maps: Quantum mechanics and classical motion, Nonlinearity 4 (1991) 309–341.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. F. Mezzadri: Boundary conditions for torus maps and spectral statistics, Ph.D. thesis, School of Mathematics, University of Bristol, (1999).

    Google Scholar 

  28. J. P. Keating and F. Mezzadri: Pseudo-symmetries of Anosov maps and spectral statistics, Nonlinearity 13 (2000) 747–775.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey and S. S. M. Wong: Random-matrix physics: spectrum and strength fluctuations, Rev. Mod. Phys. 53 (1981) 385–479.

    Article  ADS  MathSciNet  Google Scholar 

  30. F. Haake: Quantum Signatures of Chaos, Springer-Verlag, Berlin, 2nd edn., (2001).

    MATH  Google Scholar 

  31. C. E. Porter and R. G. Thomas: Fluctuations of Nuclear Reaction Widths, Phys. Rev. 104 (1956) 483–491.

    Article  ADS  Google Scholar 

  32. P. Kurlberg and Z. Rudnick: Value distribution for eigenfunctions of desymmetrized quantum maps, Internat. Math. Res. Notices (2001) 995–1002.

    Google Scholar 

  33. B. Eckhardt: Exact eigenfunctions for a quantised map, J. Phys. A 19 (1986) 10 1823–1831.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. A. Bouzouina and S. De Biévre: Equipartition of the eigenfunctions of quantized ergodic maps on the torus, Commun. Math. Phys. 178 (1996) 83–105.

    Article  MATH  ADS  Google Scholar 

  35. S. De Bièvre and M. Degli Esposti: Egorov theorems and equidistribution of eigenfunctions for the quantized sawtooth and baker maps, Ann. Inst. Henri Poincaré, Physique Théorique 69 (1996) 1–30.

    Google Scholar 

  36. A. Bäcker and H. R. Dullin: Symbolic dynamics and periodic orbits for the cardioid billiard, J. Phys. A 30 (1997) 1991–2020.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. H. P. Baltes and E. R. Hilf: Spectra of Finite Systems, Bibliographisches Institut, Mannheim, Wien, Zürich, (1976).

    MATH  Google Scholar 

  38. M. Sieber, U. Smilansky, S. C. Creagh and R. G. Littlejohn: Non-generic spectral statistics in the quantized stadium billiard, J. Phys. A 26 (1993) 6217–6230.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. A. Bäcker, F. Steiner and P. Stifter: Spectral statistics in the quantized cardioid billiard, Phys. Rev. E 52 (1995) 2463–2472.

    Article  ADS  Google Scholar 

  40. A. Bäcker and F. Steiner: Quantum chaos and quantum ergodicity, in Ergodic Theory, Analysis and Efficient Simulation of Dynamical Systems, B. Fiedler (ed.), 717–752, Springer-Verlag Berlin/Heidelberg (2001).

    Google Scholar 

  41. J. R. Kuttler and V. G. Sigilito: Eigenvalues of the Laplacian in two dimensions, SIAM Review 26 (1984) 163–193.

    Article  MATH  MathSciNet  Google Scholar 

  42. E. J. Heller: Wavepacket dynamics and quantum chaology, in: Proceedings of the 1989 Les Houches School on Chaos and Quantum Physics (Eds. M.-J. Giannoni, A. Voros and J. Zinn Justin), North-Holland, Amsterdam, (1991).

    Google Scholar 

  43. B. Li and M. Robnik: Statistical properties of high-lying chaotic eigenstates, J. Phys. A 27 (1994) 5509–5523.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. E. Doron and U. Smilansky: Chaotic Spectroscopy, Chaos 2 (1992) 117–124.

    Article  ADS  Google Scholar 

  45. B. Dietz and U. Smilansky: A scattering approach to the quantization of billiards — The inside-outside duality, Chaos 3 (1993) 581–590.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. H. Schanz and U. Smilansiky: Quantization of Sinai’s billiard — a scattering approach, Chaos, Solitons and Fractals 5 (1995) 1289–1309.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. E. Vergini and M. Saraceno: Calculation of highly excited states of billiards, Phys. Rev. E 52 (1995) 2204–2207.

    Article  ADS  Google Scholar 

  48. A. J. Burton and G. F. Miller: The application of integral equation methods to the numerical solution of some exterior boundary-value problems, Proc. R. Soc. London Ser. A 323 (1971) 201–210.

    Google Scholar 

  49. R. E. Kleinman and G. F. Roach: Boundary integral equations for the three dimensional Helmholtz equation, SIAM Rev. 16 (1974) 214–236.

    Article  MATH  MathSciNet  Google Scholar 

  50. R. J. Riddel Jr.: Boundary-distribution solution of the Helmholtz equation for a region with corners, J. Comp. Phys. 31 (1979) 21–41.

    Article  ADS  Google Scholar 

  51. R. J. Riddel Jr.: Numerical solution of the Helmholtz equation for twodimensional polygonal regions, J. Comp. Phys. 31 (1979) 42–59.

    Article  ADS  Google Scholar 

  52. P. A. Martin: Acoustic scattering and radiation problems and the null-field method, Wave Motion (1982) 391–408.

    Google Scholar 

  53. M. V. Berry and M. Wilkinson: Diabolical points in the spectra of triangles, Proc. R. Soc. London Ser. A 392 (1984) 15–43.

    Google Scholar 

  54. M. Sieber and F. Steiner: Quantum chaos in the hyperbola billiard, Phys. Lett. A 148 (1990) 415–419.

    Article  ADS  MathSciNet  Google Scholar 

  55. D. Biswas and S. Jain: Quantum description of a pseudointegrable system: the π/3—rhombus billiard, Phys. Rev. A 42 (1990) 3170–3185.

    Article  ADS  Google Scholar 

  56. P. A. Boasmann: Semiclassical Accuracy for Billiards, Ph.D. thesis, H. H. Wills Physics Laboratory, Bristol, (1992).

    Google Scholar 

  57. P. A. Boasmann: Semiclassical accuracy for billiards, Nonlinearity 7 (1994) 485–537.

    Article  ADS  MathSciNet  Google Scholar 

  58. R. Aurich and F. Steiner: Statistical properties of highly excited quantum eigenstates of a strongly chaotic system, Physica D 64 (1993) 185–214.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  59. C. Pisani: Exploring periodic orbit expansions and renormalisation with the quantum triangular billiard, Ann. Physics 251 (1996) 208–265.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. I. Kosztin and K. Schulten: Boundary integral method for stationary states of two-dimensional quantum systems, Int. J. Mod. Phys. C 8 (1997) 293–325.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  61. B. Li, M. Robnik and B. Hu: Relevance of chaos in numerical solutions of quantum billiards, Phys. Rev. E 57 (1998) 4095–4105.

    Article  ADS  Google Scholar 

  62. M. Sieber: Billiard systems in three dimensions: the boundary integral equation and the trace formula, Nonlinearity 11 (1998) 6 1607–1623.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  63. K. Hornberger and U. Smilansky: The boundary integral method for magnetic billiards, J. Phys. A 33 (1999) 2829–2855.

    Article  ADS  MathSciNet  Google Scholar 

  64. R. Aurich and J. Marklof: Trace formulae for three-dimensional hyperbolic lattices and application to a strongly chaotic tetrahedral billiard, Physica D 92 (1996) 101–129.

    Article  MATH  MathSciNet  Google Scholar 

  65. H. Primack and U. Smilansky: Quantization of the 3-dimensional Sinai billiard, Phys. Rev. Lett. 74 (1995) 4831–4834.

    Article  ADS  Google Scholar 

  66. G. Steil: Eigenvalues of the Laplacian for Bianchi groups, in: Emerging applications of number theory (Minneapolis, MN, 1996), 617–641, Springer, New York, (1999).

    Google Scholar 

  67. T. Prosen: Quantization of generic chaotic 3D billiard with smooth boundary I: energy level statistic, Phys. Lett. A 233 (1997) 323–331.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  68. T. Prosen: Quantization of generic chaotic 3D billiard with smooth boundary II: structure of high-lying eigenstates, Phys. Lett. A 233 (1997) 332–342.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  69. R. D. Ciskowski and C. Brebbia, eds.: Boundary Element Methods in Acoustics. Computational Mechanics Publications and Elsevier Applied Science, (1991).

    Google Scholar 

  70. E. B. Bogomolny: Semiclassical quantization of multidimensional systems, Nonlinearity 5 (1992) 805–866.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  71. T. Harayama and A. Shudo: Zeta function derived from the boundary element method, Phys. Lett. A 165 (1992) 417–426.

    Article  ADS  MathSciNet  Google Scholar 

  72. B. Burmeister: Korrekturen zur Gutzwillerschen Spurformel für Quantenbillards, Diploma Thesis, II. Institut für Theoretische Physik, Universität Hamburg (1995).

    Google Scholar 

  73. M. Sieber, N. Pavloff and C. Schmit: Uniform approximation for diffractive contributions to the trace formula in billiard systems, Phys. Rev. E 55 (1997) 2279–2299.

    Article  ADS  MathSciNet  Google Scholar 

  74. B. Burmeister and F. Steiner: Exact trace formula for quantum billiards, unpublished (1995).

    Google Scholar 

  75. S. Tasaki, T. Harayama and A. Shudo: Interior Dirichlet eigenvalue problem, exterior Neumann scattering problem, and boundary element method for quantum billiards, Phys. Rev. E 56 (1997) R13–R16.

    Article  ADS  MathSciNet  Google Scholar 

  76. J.-P. Eckmann and C.-A. Pillet: Zeta functions with Dirichlet and Neumann boundary conditions for exterior domains, Helv. Phys. Acta 70 (1997) 44–65.

    MATH  MathSciNet  Google Scholar 

  77. R. Aurich: private communication.

    Google Scholar 

  78. M. Robnik: Quantising a generic family of billiards with analytic boundaries, J. Phys. A 17 (1984) 1049–1074.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  79. T. Prosen and M. Robnik: Energy level statistics and localization in sparsed banded random matrix ensembles, J. Phys. A 26 (1993) 1105–1114.

    Article  MATH  ADS  Google Scholar 

  80. M. Abramowitz and I. A. Stegun (eds.): Pocketbook of Mathematical Functions, Verlag Harri Deutsch, Thun — Frankfurt/Main, abridged edn., (1984).

    Google Scholar 

  81. A. Sommerfeld: Vorlesungen über Theoretische Physik, Band VI: Partielle Differentialgleichungen der Physik, Harri Deutsch, Thun, (1984).

    Google Scholar 

  82. T. Hesse: Semiklassische Untersuchung zwei — und dreidimensionaler Billardsysteme, Ph.D. thesis, Abteilung Theoretische Physik, Universität Ulm, (1997).

    Google Scholar 

  83. K. Życzkowski: Classical and quantum billiards, integrable, nonintegrable, and pseudo-integrable, Acta Physica Polonica B 23 (1992) 245–270.

    MathSciNet  Google Scholar 

  84. A. Bäcker and R. Schubert: Chaotic eigenfunctions in momentum space, J. Phys. A 32 (1999) 4795–4815.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  85. J. M. Tualle and A. Voros: Normal modes of billiards portrayed in the stellar (or nodal) representation, Chaos, Solitons and Fractals 5 (1995) 1085–1102.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  86. F. P. Simonotti, E. Vergini and M. Saraceno: Quantitative study of scars in the boundary section of the stadium billiard, Phys. Rev. E 56 (1997) 3859–3867.

    Article  ADS  MathSciNet  Google Scholar 

  87. A. Bäcker and R. Schubert: Autocorrelation function of eigenstates in chaotic and mixed systems, J. Phys. A 35 (2002) 539–564.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  88. E. J. Heller: Bound-state eigenfunctions of classically chaotic Hamiltonian systems: Scars of periodic orbits, Phys. Rev. Lett. 53 (1984) 1515–1518.

    Article  ADS  MathSciNet  Google Scholar 

  89. Python, http://www.python.org/.

  90. Numerical Python (NumPy), http://sourceforge.net/projects/numpy/.

  91. SciPy, http://www.scipy.org/.

  92. Gnuplot, http://www.gnuplot.info/.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bäcker, A. (2003). Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems. In: Esposti, M.D., Graffi, S. (eds) The Mathematical Aspects of Quantum Maps. Lecture Notes in Physics, vol 618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-37045-5_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-37045-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02623-5

  • Online ISBN: 978-3-540-37045-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics