Skip to main content

Brewer’s yeast: genetic structure and targets for improvement

  • Chapter
  • First Online:

Part of the book series: Topics in Current Genetics ((TCG,volume 2))

Abstract

The art of beer brewing is ancient, and Saccharomyces yeast probably played a pivotal role from the beginning. Production of beer from the barley grain consists of multiple steps, of which only the last few involve the yeast. Nevertheless, the behaviour of the yeast is highly decisive for both speed and outcome of the whole process, and to a large extent influences the total beer flavour profile. Long known fermentation-related problems as well as the occasional evolution of certain offflavours can be blamed on the yeast. Great efforts have therefore gone into studies of the genetics of brewing yeast, starting with the pure cultivation of lager brewing yeast more than 100 years ago and continuing with today’s detailed description of the brewing yeast genome, as well as ventures into genetic modification to solve brewing problems.

Here we describe current knowledge on brewing yeast genetics and phylogeny, fields, which have developed with an increasing speed during the last couple of decades. Further, we portray the genetic technologies that are available for the yeast breeder in his or her endeavours for strain improvement. Major areas for the improvement of the brewing yeast behaviour are discussed, and the scientific bases for past and current efforts to solve these problems by genetic approaches are described, as well as the strategies employed.

Finally, we speculate on the future of brewing yeast modification, and take into consideration the great landmarks in yeast research during the last couple of decades. We also briefly discuss matters of public perception of genetically modified brewing yeast.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott MS, Pugh TA and Pringle AT (1993) Biotechnological advances in brewing. In:Gump, BH, ed:Beer and Wine production Analysis, Characterization and Technological Advances., American Chemical Society, Washington DC, USA pp 150

    Google Scholar 

  • Akadla R, Hirosawa I, Kawahata, M, Hoshida, H and Nishizawa, Y (2002) Sets of integrating plasmids and gene disruption cassettes containing improved counter-selection markers designed for repeated use in budding yeast. Yeast 19:393–402

    Article  CAS  Google Scholar 

  • Andersen TH, Hoffmann L, Grifone R, Nilsson-Tillgren T and Kielland-Brandt MC (2000) Brewing yeast genetics. EBC Monograph 28, Fachverlag Hans Carl, Nürnberg pp 140–147

    Google Scholar 

  • Anness BJ, Bamforth CW and Wainwright T (1979) The measurement of dimethyl sulphoxide in barley and malt and its reduction to dimethyl sulphide by yeast. J Inst Brew 85:346–349

    CAS  Google Scholar 

  • Ashida S, Ichikawa E, Suginami K and Imayasu S (1987) Isolation and application of mutants producing sufficient isoamyl acetate, a sake flavour component. Agric Biol Chem 51:2061–2065

    CAS  Google Scholar 

  • De Barros Lopes M, Bellon JR, Shirley NJ and Ganter PF (2002) Evidence for multiple interspecific hybridization in Saccharomyces sensu stricto species. FEMS Yeast Res 1:323–331

    Article  Google Scholar 

  • Bidard F, Bony M, Blondin B, Dequin S and Barre P (1995) The Saccharomyces FLO1 flocculation gene encodes for a cell surface protein. Yeast 11:809–822

    Article  CAS  Google Scholar 

  • Bilinski CA and Casey GP (1989) Developments in sporulation and breeding of brewer’s yeast. Yeast 5:429–438

    Article  CAS  Google Scholar 

  • Bilinski CA, Russell I and Stewart GG (1987) Cross-breeding of Saccharomyces cerevisiae and Saccharomyces uvarum (carlsbergensis) by mating of meiotic segregants:isolation and characterization of species hybrids. Proc 21st Congr Eur Brew Conv, 1987, Madrid pp 497–504

    Google Scholar 

  • Blomqvist K, Suihko ML, Knowles J and Penttilä M (1991) Chromosomal integration and expression of two bacterial α-acetolactate decarboxylase genes in brewer’s yeast. Appl Envir Microbiol 57:2796–2803

    CAS  Google Scholar 

  • Boeke JD, LaCroute F and Fink GR (1984) A positive selection for mutants lacking orotidine-5’-phosphate decarboxylase activity in yeast:5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346

    Article  CAS  Google Scholar 

  • Brewer, JD and Fenton, MS (1980) The formation of sulphur dioxide during femientation. Proc 16th Conv Inst Brew, Australia and New Zealand section, 1980 pp 155–164

    Google Scholar 

  • Børsting C, Hummel R, Schultz ER, Rose TM, Pedersen, MB, Knudsen J and Kristiansen K (1997) Saccharomyces carlsbergensis contains two functional genes encoding the acyl-CoA binding protein, one similar to the ACB1 gene from S. cerevisiae and one identical to the ACB1 gene from S. monacensis. Yeast 13:1409–1421

    Article  Google Scholar 

  • Casaregola S, Nguyen HV, Lapathitis G, Kotyk A and Gaillardin C (2001) Analysis of the constitution of the beer yeast genome by PCR sequencing and subtelomeric sequence hybridization. Int J Syst Evol Microbiol 51:1607–1618

    CAS  Google Scholar 

  • Casey, GP (1986a) Cloning and analysis of two alleles of the ILV3 gene from Saccharomyces carlsbergensis. Carlsberg Res Commun 51:327–341

    Article  CAS  Google Scholar 

  • Casey, GP (1986b) Molecular and genetic analysis of chromosomes X in Saccharomyces carlsbergensis. Carlsberg Res Commun 51:343–362

    Article  CAS  Google Scholar 

  • Casey GP, Xiao W and Rank GH (1988) A convenient dominant selection marker for gene transfer in industrial strains of Saccharomyces yeast:SMRI encoded resistance to the herbicide sulfometuron methyl. J Inst Brew 94:93–97

    CAS  Google Scholar 

  • Corran HS (1975) A History of Brewing. David & Charles, Newton Abbott, UK

    Google Scholar 

  • Dequin S (2001) The potential of genetic engineering for improving brewing, wine-making and baking yeasts. Appl Microbiol Biotechnol 56:577–588

    Article  CAS  Google Scholar 

  • Donalies UEB and Stahl U (2002) Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1. Yeast 19:475–484

    Article  CAS  Google Scholar 

  • Dufour J-P, Carpentier B, Kulakumba M, van Haecht J-L and Devreux A (1989) Alteration of SO2 production during fermentation. Proc 22nd Congr Eur Brew Conv, 1989, Zürich pp 331–338

    Google Scholar 

  • Emeis C-C (1971) A new hybrid yeast for the fermentation of wort dextrins. Am Soc Brew Chem Proc 29:58–62

    Google Scholar 

  • Falco SC and Dumas KS (1985) Genetic analysis of mutants of Saccharomyces cerevisiae resistant to the herbicide sulfometuron methyl. Genetics 109:21–35

    CAS  Google Scholar 

  • Freeman RE (1981) Construction of brewing yeasts for production of low carbohydrate beers. Proc 18th Congr Eur Brew Conv, 1981, Copenhagen pp 497–504

    Google Scholar 

  • Fujii T, Kondo K, Shimizu F, Sone H, Tanaka J-I and Lnoue T (1990) Application of a ribosomal DNA integration vector in the construction of a brewer’s yeast having α-acetolactate decarboxylase activity. Appl Envir Microbiol 56:997–1003

    CAS  Google Scholar 

  • Fujii T, Nagasawa N, Iwamatsu A, Bogaki T, Tamai Y and Hamachi, M (1994) Molecular cloning, sequence analysis, and expression of the yeast alcohol ac etyl trans ferase gene. Appl Env Microbiol 60:2786–2792

    CAS  Google Scholar 

  • Fujii T, Yoshimoto H and Tamai Y (1996) Acetate ester production by Saccharomyces cerevisiae lacking the ATF1 gene encoding the alcohol acetyltrans ferase. J Ferment Bioeng 81:538–542

    Article  CAS  Google Scholar 

  • Fukuda K, Yamamoto N, Kiyokawa Y, Yanagiuchi T, Wakai Y, Kitamoto K, Inoue Y and Kimura A (1998) Balance of activities of alcohol acetyltrans ferase and esterase in Saccharomyces cerevisiae is important for production of isoamyl acetate. Appl Environ Microbiol 64:4076–4078

    CAS  Google Scholar 

  • Gjermansen C (1983) Mutagenesis and genetic transformation of meiotic segregants of lager yeast. Carlsberg Res Commun 48:557–565

    Article  Google Scholar 

  • Gjermansen, C (1991): Comparison of genes in Saccharomyces cerevisiae and Saccharomyces carlsbergensis. PhD thesis, University of Copenhagen, 1991, Copenhagen

    Google Scholar 

  • Gjermansen C and Sigsgaard P (1981) Construction of a hybrid brewing strain of Saccharo-myces carlsbergensis by mating of meiotic segregants. Carlsberg Res Commun 46:1–11

    Article  CAS  Google Scholar 

  • Gjermansen C, Nilsson-Tillgren T, Petersen JGL, Kielland-Brandt MC, Sigsgaard P and Holmberg S (1988) Towards diacetyl-less brewers yeast Influence of ilv2 and ilv5 mutations. J Basic Microbiol 28:175–183

    Article  CAS  Google Scholar 

  • Goffeau et al (1996) Life with 6000 genes. Science 274:562–567

    Article  Google Scholar 

  • Goldstein AL and McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553

    Article  CAS  Google Scholar 

  • Goossens E, Debourg A, Villanueba KD and Masschelein CA (1993) Decreased diacetyl production in lager brewing yeast by integration of the ILV5 gene. Proc 24th Congr Eur Brew Conv, 1993, Oslo pp 251–258

    Google Scholar 

  • Gopal CV and Hammond JRM (1992) Use of genetically-modified yeasts for beer production. Proc 5th Intl Brew Tech Conf, 1992, Harrogate pp 297–306

    Google Scholar 

  • Groes M, Teilum K, Olesen K, Poulsen FM and Henriksen A (2002) Purification, crystalization and preliminary X-ray diffraction analysis of the carbohydrate-binding domain of flocculin, a cell-adhesion molecule from Saccharomyces carlsbergensis. Acta Cryst D58:2135–2137

    CAS  Google Scholar 

  • Gyllang, H, Winge, M and Korch, C (1989) Regulation of SO2 formation during fermentation. Proc 22nd Congr Eur Brew Conv, 1989, Zurich pp 347–354

    Google Scholar 

  • Hammond JRM (1995) Genetically-modified brewing yeasts for the 21st century. Progress to date. Yeast 11:1613–1627

    Article  CAS  Google Scholar 

  • Hansen EC (1883) Recherches sur la physiologie et la morphologie des ferments alcooliques V. Méthodes pour obtenir des cultures pures de Saccharomyces et de mikroorganismes analogues. Compt Rend Trav Lab Carlsberg 2:92–105

    Google Scholar 

  • Hansen EC (1908) Recherches sur la physiologie et la morphologie des ferments alcooliques XIII. Nouvelles études sur des levures de brasserie à fermentation basse. Compt Rend Trav Lab Carlsberg 7:179–217

    CAS  Google Scholar 

  • Hansen J (1999) Inactivation of MXR1 abolishes formation of dimethyl sulphide from dimethyl sulfoxide in Saccharomyces cerevisiae. Appl Env Microbiol 65:3915–3919

    CAS  Google Scholar 

  • Hansen J and Johannesen PF (2000) Cysteine is essential for transcriptional regulation of the sulphur assimilation genes in S. cerevisiae. Mol Gen Genet 263:535–542

    Article  CAS  Google Scholar 

  • Hansen J and Kielland-Brandt M (1994) Saccharomyces carlsbergensis contains two functional MET2 alleles similar to homologues from S cerevisiae and S monacensis. Gene 140:33–40

    Article  CAS  Google Scholar 

  • Hansen J and Kielland-Brandt MC (1995) Genetic control of sulphite production in brewer’s yeast. Proc 25th Congr Eur Brew Conv 1995, Brussels pp 319–328

    Google Scholar 

  • Hansen J and Kielland-Brandt MC (1996a) Inactivation of MET2 in brewer’s yeast increases the level of sulphite in beer. J Biotechnol 50:75–87

    Article  CAS  Google Scholar 

  • Hansen J and Kielland-Brandt MC (1996b) Inactivation of MET10 in brewer’s yeast specifically increases SO2 formation during beer production. Nature Biotechnol 14:1587–1591

    Article  CAS  Google Scholar 

  • Hansen J and Kielland-Brandt MC (1996c) Modification of biochemical pathways in industrial yeasts. J Biotechnol 49:1–12

    Article  CAS  Google Scholar 

  • Hansen J, Cherest H and Kielland-Brandt MC (1994) Two divergent METI0 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis, encode the a subunit of sulphite reductase and specify potential binding sites for FAD and NADPH. J Bacteriol 176:6050–6058

    CAS  Google Scholar 

  • Hansen J, Bruun SV, Bech LM and Gjermansen C (2002) Brewing yeast expression of the MXR1 gene is the major determinant for the content of dimethyl sulphide in beer. FEMS Yeast Res 2:137–149

    CAS  Google Scholar 

  • Hashida-Okado T, Ogawa A, Kato I and Takesako K (1998) Transformation system for prototrophic industrial yeasts using the AUR1 gene as a dominant selection marker. FEBS Lett 425:117–122

    Article  CAS  Google Scholar 

  • Henderson RCA, Cox BS and Tubb R (1985) The transformation of brewing yeasts with a plasmid containing the gene for copper resistance. Curr Genet 9:133–138

    Article  CAS  Google Scholar 

  • Hinchliffe E (1991) Strain improvement of brewing yeast. In:Peberdy, JF, Caten, CE, Ogden, JE and Bennett, JW, eds:Applied Molecular Genetics of Fungi Symposium of the British Mycological Society held at the University of Nottingham, April 1990, British Mycological Society, Cambridge, pp 129–145

    Google Scholar 

  • Hirata D and Hiroi T (1991) Genes that cause overproduction of isoamyl alcohol by increased gene-dosage in Saccharomyces cerevisiae. Agric Biol Chem 55:919–924

    CAS  Google Scholar 

  • Hirata D, Aoki S, Watanabe K, Tsukioka M and Suzuki T (1992) Stable overproduction of isoamyl alcohol by Saccharomyces cerevisiae with chromo some-integrated multicopy LEU4 genes. Biosci Biotech Biochem 56:1682–1683

    Article  CAS  Google Scholar 

  • Hoffman L (2000) The defective sporulation of lager brewing yeast. PhD thesis, University of Copenhagen, Copenhagen

    Google Scholar 

  • Holmberg, S (1982) Genetic differences between Saccharomyces carlsbergensis and S cerevisiae II. Restriction endonuclease analysis of genes in chromosome III. Carlsberg Res Commun 47:233–244

    Article  CAS  Google Scholar 

  • Hough JS, Briggs DE, Stevens R and Young TW (1982) Malting and Brewing Science, Volume II Hopped Wort and Beer. Chapman and Hall, London, UK

    Google Scholar 

  • Jackson EA, Balance GM and Thomsen KK (1986) Construction of a yeast vector directing the synthesis and release of barley (1→ 3, 1→ 4)-β-glucanase. Carlsberg Res Commun 51:445–458

    Article  CAS  Google Scholar 

  • James TC, Campbell S, Donnelly D and Bond U (2003) Transcription profile of brewery yeast under fermentation conditions. J Appl Microbiol 94:432–448

    Article  CAS  Google Scholar 

  • Johannesen PF (1994) Increasing the flux in the sulphur assimilatory pathway Overproduction of MET3, MET14 and MET16 in Saccharomyces cerevisiae. M Sc thesis, University of Copenhagen, Copenhagen

    Google Scholar 

  • Johannesen PF and Hansen J (2002) Differential transcriptional regulation of gene homoeologues in a fungal species hybrid. FEMS Yeast Res 1:315–322

    CAS  Google Scholar 

  • Johannesen PF, Nyborg M and Hansen J (1999) Construction of S cadsbergensis brewer’s yeast without production of sulphite. Proc 27th Conf Eur Brew Conv, Cannes, pp 655–662

    Google Scholar 

  • Kawahata M, Amari S, Nishizawa Y and Akada R (1999) A positive selection for plasmid loss in Saccharomyces cerevisiae using galactose-inducible growth inhibitory sequences. Yeast 15:1–10

    Article  CAS  Google Scholar 

  • Kielland-Brandt MC (1994a) New developments in the production of alcoholic beverages-modification of existing biochemical pathways in yeast. In:Alberghina L, Frontali L and Sensi P, eds:ECB6 Proc 6th Eur Congr Biotechnol (Florence), 1993 Elsevier Science BV, Amsterdam pp 1091–1095

    Google Scholar 

  • Kielland-Brandt MC (1994b) Industrial Saccharomyces yeasts In: Johnston, JR, ed:Molecular Genetics of Yeast. A Practical Approach., Oxford University Press, Oxford, pp 247–259

    Google Scholar 

  • Kielland-Brandt MC, Gjermansen C, Nilsson-Tillgren T and Holmberg S (1989) Yeast breeding. Proc 22nd Congr Eur Brew Conv, 1989, Zurich pp 37–47

    Google Scholar 

  • Kielland-Brandt MC, Gjermansen C, Tullin S, Nilsson-Tillgren T, Sigsgaard P and Holmberg S (1990) Genetic analysis and breeding of brewer’s yeast. IrtHeslot H, Davies J, Florent J, Bobichon L, Durand G and Penasse L, eds:Proc 6th International Symposium on Genetics of Industrial Microorganisms., vol II, 1990, Société Française de Microbiologie, Strasbourg, pp 877–885

    Google Scholar 

  • Kielland-Brandt MC, Nilsson-Tillgren T, Gjermansen C, Holmberg S and Pedersen MB (1995) Genetics of brewing yeasts. In:Wheals, AE, Rose, AH and Harrison, JS, eds:The Yeasts., 2nd edn, Vol 6 Academic Press, London, UK, pp 223–254

    Google Scholar 

  • Kim K, Bajszar G, Lee SY, Knudsen F, Mattoon JR (1994) Cloning of a new allelic variant of a Saccharomyces diastaticus glucoamylase gene and its introduction into industrial yeasts. Appl Biochem Biotech 44:161–185

    Article  CAS  Google Scholar 

  • Kobayashi O, Hayashi N, Kuroki R and Sone H (1998) Region of FLO1 proteins responsible for sugar recognition. J Bacteriol 180:6503–6510

    CAS  Google Scholar 

  • Kodama Y, Fukui N, Ashikari T and Shibano Y (1995) Improvement of maltose fermentation efficiency: Constitutive expression of MAL genes in brewing yeast. J Am Soc Brew Chem 53:24–29

    CAS  Google Scholar 

  • Kodama Y, Omura F, Miyajima K and Ashikari T (2001) Control of higher alcohol production by manipulation of the BAP2 gene in brewing yeast. J Am Soc Brew Chem 59:157–162

    CAS  Google Scholar 

  • Korch C, Mountain HA, Gyllang H, Winge M and Brehmer P (1991) A mechanism for sulphite production in beer and how to increase sulphite levels by recombinant genetics. Proc 23rd Congr Eur Brew Conv, 1991, Lisbon pp 201–208

    Google Scholar 

  • Kunze G, Bode R, Rintala H and Hofemeister J (1989) Heterologous gene expression of the glyphosate resistance marker and its application in yeast transformation. Curr Genet 15:91–98

    Article  CAS  Google Scholar 

  • Lancashire WE, Carter AT, Howard JJ and Wilde RJ (1989) Superattenuating brewing yeast. Proc 22nd Congr Eur Brew Conv, 1989, Zurich pp 491–498

    Google Scholar 

  • Lee S, Villa K and Patino H (1995) Yeast strain development for enhanced production of desirable alcohols/esters in beer. J Am Soc Brew Chem 53:153–156

    CAS  Google Scholar 

  • Leemans C, Dupire S and Macron J-Y (1993) Relation between wort DMSO and DMS concentration in beer. Proc Eur Brew Conv Congr, Oslo, p 709–716

    Google Scholar 

  • Meaden PG and Tubb RS (1985) A plasmid vector system for the genetic manipulation of brewing strains. Proc 20th Congr Eur Brew Conv, 1985, Helsinki pp 219–226

    Google Scholar 

  • Meldgaard M, Harthill J, Petersen B and Olsen O (1995) Glycan modification of a thermostable recombinant (1-3, l-4)-β-glucanase secreted from Saccharomyces cerevisiae is determined by strain and culture conditions. Glycoconj J 12:380–390

    Article  CAS  Google Scholar 

  • Mithieux SM and Weiss AS (1995) Tandem integration of multiple IL V5 copies and elevated transcription in polypioid yeast. Yeast 11:311–316

    Article  CAS  Google Scholar 

  • Nagasawa N, Bogaki T, Iwamatsu A, Hamachi M and Kumagai C (1998) Cloning and nucleotide sequence of the alcohol acetyltrans ferase II gene (ATF2) from Saccharomyces cerevisiae. Kyokai No 7 Biosci Biotechnol Biochem 62:1852–1857

    Article  CAS  Google Scholar 

  • Nilsson-Tillgren, T, Gjermansen, C, Kielland-Brandt, MC, Petersen, JGL and Holmberg, S (1981) Genetic differences between Saccharomyces cadsbergensis and S cerevisiae Analysis of chromosome HE by single chromosome transfer. Carlsberg Res Commun 46:65–76

    Article  CAS  Google Scholar 

  • Nilsson-Tillgren T, Gjermansen C, Holmberg S, Petersen JGL and Kielland-Brandt MC (1986) Analysis of chromosome V and the IL VI gene from Saccharomyces cadsbergensis. Carlsberg Res Commun 51:309–326

    Article  CAS  Google Scholar 

  • Nordlov, H (1985) Formation of sulphur dioxide during beer fermentation. Proc 20th Congr Eur Brew Conv, 1985, Helsinki pp 291–298

    Google Scholar 

  • Olesen K, Johannesen PF, Hoffmann L, Sorensen SB, Gjermansen C and Hansen J (2000) The pYC plasmids, a series of cassette-based yeast plasmid vectors providing means of counter-selection. Yeast 16:1035–1043

    Article  CAS  Google Scholar 

  • Olesen K, Felding T, Gjennansen C and Hansen J (2002) The dynamics of the Saccharomyces carlsbergensis brewing yeast transcriptome during a production-s cale lager beer fermentation. FEMS Yeast Res 2:563–573

    CAS  Google Scholar 

  • Omura F, Shibano Y, Fukui N and Nakatani K (1995) Reduction of hydrogen sulphide production in brewing yeast by constitutive expression of MET25 gene. J Am Soc Brew Chem 53:58–62

    CAS  Google Scholar 

  • Ono B-I, Kijima K, Ishii N, Kawato T, Matsuda A, Paszewski A, Shinoda S (1996) Regulation of sulphate assimilation in Saccharomyces cerevisiae. Yeast 12:1153–1162

    Article  CAS  Google Scholar 

  • Panoutsopoulou K, Wu J, Hayes, A, Butler, P and Oliver, SG (2001) Yeast transcriptome analysis during the brewing process. Yeast 18:S300

    Google Scholar 

  • Park CS, Park YJ, Lee YH, Park KJ, Kang HS and Pek UH (1990) The novel genetic manipulation to improve the plasmid stability and enzyme activity in the recombinant brewing yeast. MBAA Tech Quart 27:112–116

    CAS  Google Scholar 

  • Paszewski A, Ono B-I (1992) Biosynthesis of sulphur amino acids in Saccharomyces cerevisiae: regulatory roles of methionine and S-adenosylmethionine reassessed. Curr Genet 22:273–275

    Article  CAS  Google Scholar 

  • Pedersen, MB (1985) DNA sequence polymorphisms in the genus Saccharomyces II Analysis of the genes RDNI, HIS4, LEU2 and Ty transposable elements in Carlsberg, Tuborg and 22 Bavarian brewing strains. Carlsberg Res Commun 50:263–272

    Article  CAS  Google Scholar 

  • Pedersen MB (1986a) DNA sequence polymorphism in the genus Saccharomyces HE Restriction endonuclease fragment patterns of chromosomal regions in brewing and other yeast strains. Carlsberg Res Commun 51:163–183

    Article  CAS  Google Scholar 

  • Pedersen MB (1986b) DNA sequence polymorphism in the genus Saccharomyces IV Homologous chromosomes HE in Saccharomyces bayanus, S carlsbergensis, and S uvarwn. Carlsberg Res Commun 51:185–202

    Article  CAS  Google Scholar 

  • Pedersen, MB (1994) Molecular analyses of yeast DNA-tools for pure yeast maintenance in the brewery. J Am Soc Brew Chem 52:23–27

    Google Scholar 

  • Penttilä M, Suihko ML, Lehtinen U, Nikkola M and Knowles JKC (1987a) Construction of brewer’s yeasts secreting fungal endo-β-glucanases. Curr Genet 12:413–420

    Article  Google Scholar 

  • Penttilä M, André L, Saloheimo M, Lehtovaara P, Knowles JKC (1987b) Expression of two Tnchoderma reesei endoglucanases in the yeast Saccharomyces cerevisiae. Yeast 3:175–185

    Article  Google Scholar 

  • Penttilä M and Enari T-M (1991) Genetic engineering of industrial yeasts. In:Cheremisinoff, PN and Ferrante, LM eds:Biotechnology-durent Progress., Vol 1, Technomic Publishing Co, Inc, Lancaster, UK pp 173–202

    Google Scholar 

  • Perry C and Meaden P (1988) Properties of a genetic ally-engineered dextrin-fermenting strain of brewers’ yeast. J Inst Brew 94:64–67

    CAS  Google Scholar 

  • Petersen JGL, Nilsson-Tillgren T, Kielland-Brandt MC, Gjermansen C and Holmberg S (1987) Structural heterozygosis at genes ILV2 and ILV5 in Saccharomyces carlsbergensis. Curr Genet 12:167–174

    Article  CAS  Google Scholar 

  • Polaina J (2002) Brewer’s Yeast:Genetics and Biotechnology In:Applied Mycology and Biotechnology. Volume 2:Agriculture and Food Production. Elsevier Science BV, Amsterdam, pp 1–17

    Google Scholar 

  • Pugh T, Dunn B, Venteicher A, Metzner S, Bower P, Bondre C, Seabrooks J, Ryder D, Botstein D and Brown P (2002) Global analysis of yeast gene expression during a brewery fermentation. In: Annual Meeting of the American Society of Brewing Chemists, 2002, Abstracts, o2

    Google Scholar 

  • Resnick, MA, Skaanild, M and Nilsson-Tillgren, T (1989) Lack of DNA homology in a pair of divergent chromosomes greatly sensitizes them to loss by DNA damage. Proc Natl Acad Sci USA 86:2276–2280

    Article  CAS  Google Scholar 

  • Romanos MA, Scorer CA and Clare JJ (1992) Foreign gene expression in yeast:A review. Yeast 8:423–488

    Article  CAS  Google Scholar 

  • Rothstein R (1991) Targetting, Disruption, Replacement, and allele rescue:Integrative DNA transformation in yeast. Meth Enzymol 194:281–301

    Article  CAS  Google Scholar 

  • Russell I and Stewart GG (1979) Spheroplast fusion of brewer’s yeast strains. J Inst Brew 85:95–98

    Google Scholar 

  • Sakai K, Fukui S, Yabuuchi S, Aoyagi S and Tsumura Y (1989) Expression of the Saccharomyces diastaticus STA1 gene in brewing yeasts. J Am Soc Brew Chem 47:87–91

    CAS  Google Scholar 

  • Samuel D (1996) Archaeology of ancient Egyptian beer. J Am Soc Brew Chem 54:3–12

    CAS  Google Scholar 

  • Satayanarayana T, Umbarger HE and Lindegren G (1968) Biosynthesis of branched-chain amino acids in yeast:Regulation of leucine biosynthesis in prototrophic and leucine auxotrophic strains. JBacteriol 96:2018–2024

    Google Scholar 

  • Scherer S and Davis RW (1979) Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci USA 76:4951–4955

    Article  CAS  Google Scholar 

  • Shimizu F, Sone H and Inoue T (1989) Brewing performance of a genetically transformed yeast with acetolactate decarboxylase activity. MBAA Tech Quart 26:47–50

    CAS  Google Scholar 

  • Sone H, Kondo K, Fujii T, Shimuzu F, Tanaka J and Inoue T (1987) Fermentation properties of brewer’s yeast having α-acetolactate decarboxylase gene. Proc 21st Congr Eur Brew Conv, 1987, Madrid pp 545–552

    Google Scholar 

  • Stewart GG, Garrison IF, Goring TE, Meleg M, Pipasts P and Russell I (1976) Biochemical and genetic studies on yeast flocculation. Kemia-Kemi (Helsinki) 3:465–479

    CAS  Google Scholar 

  • Stewart GG, Russell I and Sills AM (1983) Factors that control the utilization of wort carbohydrates by yeast. MBAA Tech Quart 20:1–8

    CAS  Google Scholar 

  • Stewart GG, Jones R and Russell I (1985) The use of derepressed yeast mutants in the fermentation of brewery wort. Proc 20th Congr Eur Brew Conv, 1985, Helsinki pp 243–250

    Google Scholar 

  • Stratford M (1992) Yeast flocculation: reconciliation of physiological and genetic viewpoints. Yeast 8:25–38

    Article  CAS  Google Scholar 

  • Suihko M-L, Blomquist K, Penttilä M, Gisler R and Knowles J (1990) Recombinant brewer’s yeast strains suitable for accelerated brewing. J Biotechnol 14:285–300

    Article  CAS  Google Scholar 

  • Tada S, Takeuchi T, Sone H, Yamano S, Schofield MA, Hammond JRM and Inoue T (1995) Pilot-scale brewing with industrial yeasts which produce the α-acetolactate decarboxylase of Acetobacter aceti ssp xylinum. Proc 25rd Congr Eur Brew Conv, 1995, Brussels, pp 369–376

    Google Scholar 

  • Tamai Y, Momma T, Yoshimoto H and Kaneko Y (1998) Co-existence of two types of chromosome in the bottom fermenting yeast, Saccharomyces pastonanus. Yeast 14:923–933

    Article  CAS  Google Scholar 

  • Tamai Y, Tanaka K, Umemoto N, Tomizuka K and Kaneko Y (2000) Diversity of the HO gene encoding an endonuclease for mating type conversion in the bottom fermenting yeast Saccharomyces pastonanus. Yeast 16:1335–1343

    Article  CAS  Google Scholar 

  • Teunissen AWRH, Holub E, van der Hucht J, van der Berg JA and Steensma HY (1993) Sequence ofthe open reading frame of the FLO1 gene from Saccharomyces cerevisiae. Yeast 9:423–427

    Article  CAS  Google Scholar 

  • Teunissen AWRH and Steensma HY (1995) Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute anew subtelomeric gene family. Yeast 11:1001–1013

    Article  CAS  Google Scholar 

  • Tezuka H, Mori T, Okumura Y, Kitabatake K and Tsumura Y (1992) Cloning of a gene suppressing hydrogen sulphide production by Saccharomyces cerevisiae and its expression in a brewing yeast. J Am Soc Brew Chem 50:130–133

    CAS  Google Scholar 

  • Tubb RS, Searle BA, Goodey AR and Brown AJP (1981) Rare mating and transformation for construction of novel brewing yeasts. Proc 18th Congr Eur Brew Conv, 1981, Copenhagen pp 487–496

    Google Scholar 

  • Urano N, Sahara H and Koshino S (1993a) Conversion of a non-flocculent brewer’s yeast to flocculent ones by electrofusion 1. Identification and characterization of the fusants by pulsed field gel elctrophoresis. J Biotechnol 28:237–247

    Article  CAS  Google Scholar 

  • Urano N, Sato M, Sahara H and Koshino S (1993b) Conversion of a non-flocculent brewer’s yeast to flocculent ones by electrofusion 2. Small-scale brewing by fusants J Biotechnol 28:249–261

    Article  CAS  Google Scholar 

  • Vakeria D and Hinchliffe E (1989) Amylolytic brewing yeast:their commercial and legislative acceptability. Proc 22nd Congr Eur Brew Conv, 1989, Zürich pp 475–482

    Google Scholar 

  • Vakeria D, Box W, Bird L and Mellor J (1996) Characterisation of amylolytic brewing yeast. J Inst Brew 102:27–32

    CAS  Google Scholar 

  • Vaughan-Martini A and Kurtzman CP (1985) Deoxyribonucleic acid relatedness among species of Sacharomyces sensu stricto. Int J Syst Bacteriol 35:508–511

    Article  Google Scholar 

  • Vaughan-Martini A and Martini A (1987) Three newly delimited species of Saccharomyces sensu stricto. Antonie v Leeuwenhoek 53:77–84

    Article  Google Scholar 

  • Verstrepen K, Bauer F, Michiels C, Derdelinckx G, Delvaux F and Pretorius I (2000) in:EBC Monograph 28, EBC-Symposium Yeast Physiology — A New Era of Opportunity. Fachverlag Hans Carl, Nürnberg, pp. 30–42

    Google Scholar 

  • Villanueba KD, Goossens E and Masschelein CA (1990) Subthreshold vicinal diketone levels in lager brewing yeast fermentations by means of ILV5 gene amplification. J Am Soc Brew Chem 48:111–114

    CAS  Google Scholar 

  • Walker MD and Simpson WJ (1993) Production of volatile sulphur compounds by ale and lager brewing strains of Saccharomyces cerevisiae. Lett Appl Microbiol 16:40–43

    Article  CAS  Google Scholar 

  • Watanabe M, Tanaka N, Mishima H and Takemura S (1993) Isolation of sake yeast mutants resistant to isoamyl monofluoroacetate to improve isoamyl acetate productivity. J Ferm Bioeng 76:229–231

    Article  CAS  Google Scholar 

  • Watari J, Takata Y, Ogawa M, Sahara H, Koshino S, Onnela ML, Airaksinen U, Jaatinen R, Penttilä M and Keränen S (1994) Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 11:211–225

    Article  Google Scholar 

  • Yamagishi H and Ogata T (1999) Chromosomal structures of bottom fermenting yeasts. Syst Appl Microbiol 22:341–353

    CAS  Google Scholar 

  • Yamano S, Tanaka J and Inoue T (1994a) Cloning and expression of the gene encoding a-acetolactate decarboxylase from Acetobacter acetii ssp xylinum in brewer’s yeast. J Biotechnol 32:165–171

    Article  CAS  Google Scholar 

  • Yamano S, Kondo K, Tanaka J and Inoue T (1994b) Construction of a brewer’s yeast having α-acetolactate decarboxylase gene from Acetobacter acetn ssp xylinum integrated in the genome J Biotechnol 32:173–178

    Article  CAS  Google Scholar 

  • Yamano S, Tomizuka K, Sone H, Imura M, Takeuchi T, Tanaka J and Inoue T (1995) Brewing performance of a brewer’s yeast having a-acetolactate decarboxylase from Acetobacter aceti ssp xylinum. J Biotechnol 39:21–26

    Article  CAS  Google Scholar 

  • Yarrow, D (1984) Saccharomyces Meyen ex Reess In:NJW Kreger-van Rij, ed:The Yeasts, a Taxonomic Study., 3rd edn, Elsevier Science Publishers, Amsterdam, pp 379–395

    Google Scholar 

  • Yocum, RR (1985) European Patent No 853036259

    Google Scholar 

  • Yocum RR (1986) Genetic engineering of industrial yeasts. Proc Bio Expo 86, 1986, Boston pp 171–180

    Google Scholar 

  • Yoshimoto H, Fujiwara D, Momma T, Tanaka K, Sone H, Nagasawa N and Tamai Y (1999) Isolation and characterization of the ATF2 gene encoding alcohol acetyltransferase II in the bottom fermenting yeast Saccharomyces pastonanus. Yeast 15:409–417

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hansen, J., Kielland-Brandt, M.C. (2003). Brewer’s yeast: genetic structure and targets for improvement. In: de Winde, J.H. (eds) Functional Genetics of Industrial Yeasts. Topics in Current Genetics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-37003-X_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-37003-X_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02489-7

  • Online ISBN: 978-3-540-37003-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics