Skip to main content

Yeast functional genomics and metabolic engineering: past, present and future

  • Chapter
  • First Online:
Book cover Functional Genetics of Industrial Yeasts

Part of the book series: Topics in Current Genetics ((TCG,volume 2))

Abstract

In recent years, metabolic engineering has been applied successfully for improvement of various fermentation processes. However, even single genetic changes usually result in multigene responses, which make it difficult to predict and understand the effects of introduced genetic changes. This is a direct consequence of complex regulatory systems and of redundancy in the control of pathway fluxes. Challenges in metabolic engineering therefore, involve multiple genetic changes and often engineering of complete regulatory pathways. For this reason metabolic engineering involves studies on cellular physiology and reconstruction of regulatory networks. Analytical techniques employed in functional genomics enable a global, whole-cell view and have thus become invaluable in metabolic engineering strategies. These techniques allow understanding of the complexity of cellular metabolism and insight into the cellular effects of genetic modifications introduced.

Here we review functional genomics and metabolic engineering in yeast, discuss how these research areas interact, and present ideas and examples of the use of functional genomics tools in the process of metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–295

    Article  CAS  Google Scholar 

  • Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198

    Article  CAS  Google Scholar 

  • Backhus LE, DeRisi J, Brown PO, Bisson LF (2001) Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions. FEMS Yeast Research 1:111–125

    Article  CAS  Google Scholar 

  • Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    Article  CAS  Google Scholar 

  • Bailey JE (1999) Lessons from metabolic engineering for functional genomics and drug discovery. Nat Biotechnol 17:616–618

    Article  CAS  Google Scholar 

  • Bailey JE, Shurlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS (1996) Inverse metabolic engineering: A strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 52:109–121

    Article  CAS  Google Scholar 

  • Bennett CB, Lewis LK, Karthikeyan G, Lobachev KS, Jin YH, Sterling JF, Snipe JR, Resnick MA (2001) Genes required for ionizing radiation resistance in yeast. Nat Genet 29:426–434

    Article  CAS  Google Scholar 

  • Birrell GW, Giaever G, Chu AM, Davis RW, Brown JM (2001) A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity. Proc Natl Acad Sci USA 98:12608–12613

    Article  CAS  Google Scholar 

  • Birrell GW, Brown JA, Wu HI, Giaever G, Chu AM, Davis RW, Brown JM (2002) Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents. Proc Natl Acad Sci USA 99:8778–8783

    Article  CAS  Google Scholar 

  • Blackstock W, Mann M (2000) Proteomics: A Trends Guide. Elsevier, Amsterdam

    Google Scholar 

  • Brent R (2000) Genomic biology. Cell 100:169–183

    Article  CAS  Google Scholar 

  • Burns N, Grimwade B, Ross-Macdonald PB, Choi EY, Finberg K, Roeder GS, Snyder M (1994) Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev 8:1087–1105

    Article  CAS  Google Scholar 

  • Bussemaker HJ, Li H, Siggia ED (2001) Regulatory element detection using correlation with expression. Nat Genet 27:167–171

    Article  CAS  Google Scholar 

  • Cavalieri D, Townsend JP, Haiti DL (2000) Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. Proc Natl Acad Sci USA 97:12369–12374

    Article  CAS  Google Scholar 

  • Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, Davis RW(1998) A genome-wide tran-scriptional analysis ofthe mitotic cell cycle. Mol Cell 2:65–73

    Article  CAS  Google Scholar 

  • Chotani G, Dodge T, Hsu A, Kumar M, LaDuca R, Trimbur D, Weyler W, Sanford K (2000) The commercial production of chemicals using pathway engineering. Biochim Biophys Acta 1543:434–455

    CAS  Google Scholar 

  • Christensen B, Nielsen J (2000) Metabolic network analysis. A powerful tool in metabolic engineering. Adv Biochem Eng Biotechnol 66:209–231

    CAS  Google Scholar 

  • Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I (1998) The transcriptional program of sporulation in budding yeast. Science 282:699–705

    Article  CAS  Google Scholar 

  • Chua G, Taricani L, Stangle W, Young PG (2000) Insertional mutagenesis based on illegitimate recombination in Schizosaccharomyces pombe. Nucleic Acids Res 28:E53

    Article  CAS  Google Scholar 

  • Cliften PF, Hillier LW, Fulton L, Graves T, Miner T, Gish WR, Waterston RH, Johnston M (2001) Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res 11:1175–1186

    Article  CAS  Google Scholar 

  • Covert MW, Schilling CH, Famili I, Edwards JS, Goryanin II, Selkov E, Palsson BO (2001) Metabolic modeling of microbial strains in silico. Trends Biochem Sci 26:179–186

    Article  CAS  Google Scholar 

  • Delneri D, Brancia FL, Oliver SG (2001) Towards a truly integrative biology through the functional genomics of yeast. Curr Opin Biotechnol 12:87–91

    Article  CAS  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO(1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science278:680–686

    Article  CAS  Google Scholar 

  • Dermitzakis ET, Reymond A, Lyle R, Scamuffa N, Ucla C, Deutsch S, Stevenson BJ, Flegel V, Bucher P, Jongeneel CV, Antonarakis SE (2002) Numerous potentially functional but non-genic conserved sequences on human chromosome 21. Nature 420:578–582

    Article  CAS  Google Scholar 

  • Dorner AJ, Kaufman RJ (1994) The levels of endoplasmic reticulum proteins and ATP affect folding and secretion of selective proteins. Biologicals 22:103–112

    Article  CAS  Google Scholar 

  • Eglinton JM, Heinrich AJ, Pollnitz AP, Langridge P, Henschke PA, de Barros LM (2002) Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene. Yeast 19:295–301

    Article  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  CAS  Google Scholar 

  • Endy D, Brent R (2001) Modelling cellular behaviour. Nature 409Suppl:391–395

    Article  CAS  Google Scholar 

  • Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genom 2:155–168

    Article  CAS  Google Scholar 

  • Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  CAS  Google Scholar 

  • Förster J, Gombert AK, Nielsen J (2002) A functional genomics approach using metabolomics and in silico pathway analysis. Biotechnol Bioeng 79:703–712

    Article  CAS  Google Scholar 

  • Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253

    Article  CAS  Google Scholar 

  • Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7:601–620

    Article  CAS  Google Scholar 

  • Futcher B, Latter GI, Monardo P, McLaughlin CS, Garreis JI (1999) A sampling of the yeast proteome. Mol Cell Biol 19:7357–7368

    CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    CAS  Google Scholar 

  • Gasch AP, Huang M, Metzner S, Botstein D, Elledge SJ, Brown PO (2001) Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Meclp. Mol Biol Cell 12:2987–3003

    CAS  Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  CAS  Google Scholar 

  • Giaever G et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  Google Scholar 

  • Gill RT, Wildt S, Yang YT, Ziesman S, Stephanopoulos G (2002) Genome-wide screening for trait conferring genes using DNA microarrays. Proc Natl Acad Sci USA 99:7033–7038

    Article  CAS  Google Scholar 

  • Gjermansen C, Nilsson-Tillgren T, Petersen JG, Kielland-Brandt MC, Sigsgaard P, Holmberg S (1988) Towards diacetyl-less brewers’ yeast. Influence of ilv2 and ilv5 mutations. J Basic Microbiol 28:175–183

    Article  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546, 563-546, 567

    Article  CAS  Google Scholar 

  • Gombert AK, Moreira dos SM, Christensen B, Nielsen J(2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183:1441–1451

    Article  CAS  Google Scholar 

  • Goodlett DR, Yi EC (2002) Proteomics without polyacrylamide: qualitative and quantitative uses of tandem mass spectrometry in proteome analysis. Funct Integr Genomics 2:138–153

    Article  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    CAS  Google Scholar 

  • Haas IG, Wabl M (1983) Immuno globulin heavy chain binding protein. Nature 306:387–389

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal B, Wahlbom CF, Gardonyi M, van Zyl WH, Cordero Otero RR, Jonsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Ens Biotechnol 73:53–84

    Google Scholar 

  • Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hägerdal B, Penttila M, Kerasnen S (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology (NY) 9:1090–1095

    Article  CAS  Google Scholar 

  • Hammond C, Helenius A (1995) Quality control in the secretory pathway. Curr Opin Cell Biol 7:523–529

    Article  CAS  Google Scholar 

  • Hauser NC, Fellenberg K, Gil R, Bastuck S, Hoheisel ID, Pérez-Ortin JE (2001) Whole gnome analysis of a wine yeast strain. Comp Funct Genom 2:69–79

    Article  CAS  Google Scholar 

  • Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153

    Article  CAS  Google Scholar 

  • Ho NW, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    CAS  Google Scholar 

  • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183

    Article  CAS  Google Scholar 

  • Hoffman CS, Welton R (2000) Mutagenesis and gene cloning in Schizosaccharomyces pombe using nonhomologous plasmid integration and rescue. Biotechniques 28:532–6, 538,540

    CAS  Google Scholar 

  • Horak CE, Snyder M(2002) Global analysis of gene expression in yeast. Funct Integr Genomics 2:171–180

    Article  CAS  Google Scholar 

  • Hughes JD, Estep PW, Tavazoie S, Church GM (2000) Computational identification of cisregulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 296:1205–1214

    Article  CAS  Google Scholar 

  • Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–934

    Article  CAS  Google Scholar 

  • Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, Nishizawa M, Yamamoto K, Kuhara S, Sakaki Y (2000) Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci USA 97:1143–1147

    Article  CAS  Google Scholar 

  • Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533–538

    Article  CAS  Google Scholar 

  • Jensen LJ, Knudsen S (2000) Automatic discovery of regulatory patterns in promoter regions based on whole cell expression data and functional annotation. Bioinformatics 16:326–333

    Article  CAS  Google Scholar 

  • Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609

    Article  CAS  Google Scholar 

  • Johansson B, Christensson C, Hobley T, Hahn-Hägerdal B (2001) Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67:4249–4255

    Article  CAS  Google Scholar 

  • Kealey JT, Liu L, Santi DV, Betlach MC, Barr PJ (1998) Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc Natl Acad Sci USA 95:505–509

    Article  CAS  Google Scholar 

  • Keles S, van der LM, Eisen MB (2002) Identification of regulatory elements using a feature selection method. Bioinformatics 18:1167–1175

    Article  CAS  Google Scholar 

  • Kitano H (2002) Computational systems biology. Nature 420:206–210

    Article  CAS  Google Scholar 

  • Kjeldsen T, Pettersson AF, Hach M, Diers I, Havelund S, Hansen PH, Andersen AS(1997) Synthetic leaders with potential BiP binding mediate high-yield secretion of correctly folded insulin precursors from Saccharomyces cerevisiae. Protein Expr Purif 9:331–336

    Article  CAS  Google Scholar 

  • Klein CJ, Olsson L, Nielsen J (1998) Glucose control in Saccharomyces cerevisiae: the role of Migl in metabolic functions. Microbiology 144 (Pt l):13–24

    CAS  Google Scholar 

  • Knudsen S (2002) A biologist guide to analysis of DNA microarray data. John Wiley & Sons, New York

    Google Scholar 

  • Kondo K, Miura Y, Sone H, Kobayashi K, Iijima H (1997) High-level expression of a sweet protein, monellin, in the food yeast Candida utilis. Nat Biotechnol 15:453–457

    Article  CAS  Google Scholar 

  • Kötter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18:493–500

    Article  Google Scholar 

  • Kötter P, Ciriacy M (1993) Xylose Fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783

    Article  Google Scholar 

  • Kumar A, Snyder M (2001) Emerging technologies in yeast genomics. Nat Rev Genet 2:302–312

    Article  CAS  Google Scholar 

  • Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung KH, Miller P, Gerstein M, Roeder GS, Snyder M (2002) Subcellular localization of the yeast proteome. Genes Dev 16:707–719

    Article  CAS  Google Scholar 

  • Lee TT, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA(2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    Article  CAS  Google Scholar 

  • Lyman SK, Schekman R(1997) Binding of secretory precursor polypeptides to a translocon subcomplex is regulated by BiP. Cell 88:85–96

    Article  CAS  Google Scholar 

  • MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760–1763

    CAS  Google Scholar 

  • Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473

    Article  CAS  Google Scholar 

  • Mata J, Lyne R, Burns G, Bahler J (2002) The transcriptional program of meiosis and orulation in fission yeast. Nat Genet 32:143–147

    Article  CAS  Google Scholar 

  • Mithieux SM, Weiss AS (1995) Tandem integration of multiple ILV5 copies and elevated transcription in polyploid yeast. Yeast 11:311–316

    Article  CAS  Google Scholar 

  • Möller K, Christensen B, Förster J, Piskur J, Nielsen J, Olsson L(2002) Aerobic glucose metabolism of Saccharomyces kluyveri: growth, metabolite production, and quantification of metabolic fluxes. Biotechnol Bioeng 77:186–193

    Article  CAS  Google Scholar 

  • Nielsen J (2000) The role of metabolic engineering in the improvement of industrial processes. Thai JBiotechnol 2:14–25

    Google Scholar 

  • Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55:263–283

    Article  CAS  Google Scholar 

  • Nielsen J, Olsson L (2002) An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology. FEMS Yeast Res 2:175–181

    CAS  Google Scholar 

  • Nissen XL, Kielland-Brandt MC, Nielsen J, Villadsen J(2000) Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng2:69–77

    Article  CAS  Google Scholar 

  • Oliver DJ, Nikolau B, Wurtele ES(2002) Functional genomics: high-throughput mRNA, protein, and metabolite analyses. Metab Eng 4:98–106

    Article  CAS  Google Scholar 

  • Oliver SG (1998) Introduction to functonal analysis of the yeast genome. In: Brown AJP, Tuite M (eds) Methods in Microbiology: Yeast gene analysis. Academic Press, San Diego, pp 1–13’

    Chapter  Google Scholar 

  • Olsson L, Nielsen J (2000) The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: utilization of industrial media. Enzyme Microb Technol 26:785–792

    Article  CAS  Google Scholar 

  • Ooi SL, Shoemaker DD, Boeke JD (2001) A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science 294:2552–2556

    Article  CAS  Google Scholar 

  • Ostergaard S (2000) Metabolic engineering of the galactose metabolism in Saccharomyces cerevisiae. Technical University of Denmark

    Google Scholar 

  • Ostergaard S, Olsson L, Johnston M, Nielsen J (2000a) Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat Biotechnol 18:1283–1286

    Article  CAS  Google Scholar 

  • Ostergaard S, Olsson L, Nielsen J(2000b) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64:34–50

    Article  CAS  Google Scholar 

  • Ostergaard S, Roca C, Ronnow B, Nielsen J, Olsson L (2000c) Physiological studies in aerobic batch cultivations of Saccharomyces cerevisiae strains harboring the MEL1 gene. Biotechnol Bioeng 68:252–259

    Article  CAS  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  CAS  Google Scholar 

  • Panzner S, Dreier L, Hartmann E, Kostka S, Rapoport TA (1995) Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81:561–570

    Article  CAS  Google Scholar 

  • Papoutsakis ET (1998) Express together and conquer. Nat Biotechnol 16:416–417

    Article  CAS  Google Scholar 

  • Perrot M, Sagliocco F, Mini T, Monribot C, Schneider U, Shevchenko A, Mann M, Jeno P, Boucherie H(1999) Two-dimensional gel protein database of Saccharomyces cerevisiae (update 1999). Electrophoresis 20:2280–2298

    Article  CAS  Google Scholar 

  • Pérez-Ortín JE, Garcia-Martinez J, Alberola TM (2002) DNA chips for yeast biotechnology. The case of wine yeasts. J Biotechnol 98:227–241

    Article  Google Scholar 

  • Primig M, Williams RM, Winzeler EA, Tevzadze GG, Conway AR, Hwang SY, Davis RW, Esposito RE(2000) The core meiotic transcriptome in budding yeasts. Nat Genet 26:415–423

    Article  CAS  Google Scholar 

  • Que QQ, Winzeler EA(2002) Large-scale mutagenesis and functional genomics in yeast. Funct Integr Genomics2:193–198

    Article  CAS  Google Scholar 

  • Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50

    Article  CAS  Google Scholar 

  • Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA(2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    Article  CAS  Google Scholar 

  • Robinson AS, Wittrup KD(1993) Role of the protein-folding chaperone BiP in secretion of foreign proteins in eukaryotic cells. ACS Symposium Series 526:121–132

    Article  CAS  Google Scholar 

  • Robinson AS, Bockhaus JA, Voegler AC, Wittrup KD(1996) Reduction of BiP levels decreases heterologous protein secretion in Saccharomyces cerevisiae. J Biol Chem 271:10017–10022

    Article  CAS  Google Scholar 

  • Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L(2000) Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23:131–142

    Article  CAS  Google Scholar 

  • Ross-Macdonald P, Sheehan A, Roeder GS, Snyder M(1997) A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:190–195

    Article  CAS  Google Scholar 

  • Ross-Macdonald P, Coelho PS, Roemer T, Agarwal S, Kumar A, Jansen R, Cheung KH, Sheehan A, Symoniatis D, Umansky L, Heidtman M, Nelson FK, Iwasaki H, Hager K, Gerstein M, Miller P, Roeder GS, Snyder M(1999) Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402:413–418

    Article  CAS  Google Scholar 

  • Ronnow B, Olsson L, Nielsen J, Mikkelsen JD(1999) Derepression of galactose metabolism in melibiase producing baker’s and distillers’ yeast. J Biotechnol 72:213–228

    Article  CAS  Google Scholar 

  • Sanford K, Soucaille P, Whited G, Chotani G(2002) Genomics to fluxomics and physiomics-pathway engineering. Curr Opin Microbiol 5:318–322

    Article  CAS  Google Scholar 

  • Schaaff I, Heinisch J, Zimmermann FK (1989) Overproduction of glycolytic enzymes in yeast. Yeast 5:285–290

    Article  CAS  Google Scholar 

  • Schaechter M, Ingraham JL(2002) What limits genomics, proteomics, transcriptomics? Int Microbiol 5:51–52

    Article  CAS  Google Scholar 

  • Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271:1519–1526

    Article  CAS  Google Scholar 

  • Sherlock G (2000) Analysis of large-scale gene expression data. Curr Opin Immunol 12:201–205

    Article  CAS  Google Scholar 

  • Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Shevchenko A, Boucherie H, Mann M (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci USA 93:14440–14445

    Article  CAS  Google Scholar 

  • Shoemaker DD, Lashkari DA, Morris D, Mittmann M, Davis RW (1996) Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat Genet 14:450–456

    Article  CAS  Google Scholar 

  • Shusta EV, Raines RT, Pluckthun A, Wittrup KD(1998) Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat Biotechnol 16:773–777

    Article  CAS  Google Scholar 

  • Smith V, Botstein D, Brown PO (1995) Genetic footprinting: a genomic strategy for determining a gene’s function given its sequence. Proc Natl Acad Sci USA 92:6479–6483

    Article  CAS  Google Scholar 

  • Smits HP, Hauf J, Müller S, Hobley TJ, Zimmermann FK, Hahn-Hägerdal B, Nielsen J, Olsson L(2000) Simultaneous overexpression of enzymes of the lower part o glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16:1325–1334

    Article  CAS  Google Scholar 

  • Souciet J, Aigle M, Artiguenave F, Blandin G, Bolotin-Fukuhara M, Bon E, Brottier P, Casaregola S, de Montigny J, Dujon B, Durrens P, Gaillardin C, Lepingle A, Llorente B, Malpertuy A, Neuveglise C, Ozier-Kalogeropoulos O, Potier S, Saurin W, Tekaia F, Toffano-Nioche C, Wesolowski-Louvel M, Wincker P, Weissenbach J (2000) Genomic exploration of the hernias corny cetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Lett 487:3–12

    Article  Google Scholar 

  • Stafford DE, Stephanopoulos G(2001) Metabolic engineering as an integrating platform for strain development. Curr Opin Microbiol 4:336–340

    Article  CAS  Google Scholar 

  • Stephanopoulos G, Aristodou A, Nielsen J (1998) Metabolic Engineering. Academic Press Inc, San Diego

    Google Scholar 

  • Szyperski T (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q Rev Biophys 31:41–106

    Article  CAS  Google Scholar 

  • Takahashi T, Shimoi H, Ito K(2001) Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae. Mol Genet Genomics 265:1112–1119

    Article  CAS  Google Scholar 

  • Toh H, Horimoto K (2002) Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics 18:287–297

    Article  CAS  Google Scholar 

  • Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368

    Article  CAS  Google Scholar 

  • Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  CAS  Google Scholar 

  • van Helden J, Andre B, Collado-Vides J(2000) A web site for the computational analysis of yeast regulatory sequences. Yeast 16:177–187

    Article  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW(1995) Serial analysis of gene expression. Science 270:484–487

    Article  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE, Jr., Hieter P, Vogelstein B, Kinzler KW(1997) Characterization of the yeast transcriptome. Cell 88:243–251

    Article  CAS  Google Scholar 

  • Wahlbom F, Otero C, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B, Jönsson LJ (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilise xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism and the pentose phosphate pathway. Appl Environ Microbiol 69:740–746

    Article  CAS  Google Scholar 

  • Waterston RH, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  Google Scholar 

  • Wendisch VF, de Graaf AA, Sahm H (1997) Accurate determination of 13C enrichments in nonprotonated carbon atoms of isotopocally enriched amino acids by H nuclear magnetic resonance. Anal Biochem 245:196–202

    Article  CAS  Google Scholar 

  • Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206

    Article  CAS  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  Google Scholar 

  • Wiselogel A, Tyson S, Johnson D (1996) Biomass feedstock resources and composition. In: Wyman CE (eds) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, pp 105–118

    Google Scholar 

  • Wodicka L, Dong H, Mittmann M, Ho MH, Lockhart DJ(1997) Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol 15:1359–1367

    Article  CAS  Google Scholar 

  • Wood V, et al. (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    Article  CAS  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  Google Scholar 

  • Zhu H, Snyder M (2001) Protein arrays and microarrays. Curr Opin Chem Biol 5:40–45

    Article  CAS  Google Scholar 

  • Zhu H, Snyder M (2002) “Omic” approaches for unraveling signaling networks. Curr Opin Cell Biol 14:173–179

    Article  CAS  Google Scholar 

  • Zhu H, Klemic JF, Chang S, Bertone P, Casamayor A, Klemic KG, Smith D, Gerstein M, Reed MA, Snyder M (2000) Analysis of yeast protein kinases using protein chips. Nat Genet 26:283–289

    Article  CAS  Google Scholar 

  • Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M (2001) Global analysis of protein activities using proteome chips. Science 293:2101–2105

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bro, C., Regenberg, B., Nielsen, J. (2003). Yeast functional genomics and metabolic engineering: past, present and future. In: de Winde, J.H. (eds) Functional Genetics of Industrial Yeasts. Topics in Current Genetics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-37003-X_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-37003-X_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02489-7

  • Online ISBN: 978-3-540-37003-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics