Skip to main content

Gauge Conditions for Long-Term Numerical Black Hole Evolution With or Without Excision

  • Chapter
  • First Online:
Current Trends in Relativistic Astrophysics

Part of the book series: Lecture Notes in Physics ((LNP,volume 617))

Abstract

We extend previous work on 3D black hole excision to the case of distorted black holes, with a variety of dynamic gauge conditions that are able to respond naturally to the spacetime dynamics. We show that the combination of excision and gauge conditions we use is able to drive highly distorted, rotating black holes to an almost static state at late times, with well behaved metric functions, without the need for any special initial conditions or analytically prescribed gauge functions. Further, we show for the first time that one can extract accurate waveforms from these simulations, with the full machinery of excision or no excision and dynamic gauge conditions. The evolutions can be carried out for long times, far exceeding the longevity and accuracy of even better resolved 2D codes. While traditional 2D codes show errors in quantities such as apparent horizon mass of over 100% by t ≈ 100M, and crash by t ≈ 150M, with our new techniques the same systems can be evolved for more than hundreds of M’s in full 3D with errors of only a few percent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Alcubierre et al.: Phys. Rev. Lett. 87, 271103 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Baker et al.: Phys. Rev. Lett. 87, 121103 (2001)

    Article  ADS  Google Scholar 

  3. J. Thornburg: Class. Quantum Grav. 4, 1119 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Seidel, W.-M. Suen: Phys. Rev. Lett. 69, 1845 (1992)

    Article  ADS  Google Scholar 

  5. G. B. Cook et al.: Phys. Rev. Lett 80, 2512 (1998)

    Article  ADS  Google Scholar 

  6. R. Gomez et al.: Phys. Rev. Lett. 80, 3915 (1998)

    Article  ADS  Google Scholar 

  7. M. Alcubierre, B. Brügmann: Phys. Rev. D63, 104006 (2001)

    ADS  Google Scholar 

  8. S. Brandt et al.: Phys. Rev. Lett. 85, 5496 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Anninos et al.: Phys. Rev. D52, 2059 (1995)

    ADS  MathSciNet  Google Scholar 

  10. G. E. Daues: Ph. D. Thesis, Washington University, St. Louis, Missouri (1996)

    Google Scholar 

  11. S. Brandt, E. Seidel: Phys. Rev. D54, 1403 (1996)

    ADS  MathSciNet  Google Scholar 

  12. S. Brandt, E. Seidel: Phys. Rev. D52, 856 (1995)

    ADS  MathSciNet  Google Scholar 

  13. K. Camarda, E. Seidel, Phys. Rev. D59, 064019 (1999)

    ADS  Google Scholar 

  14. J. Baker et al.: Phys. Rev. D62, 127701 (2000)

    ADS  Google Scholar 

  15. S. Brandt, K. Camarda, E. Seidel: In Proceedings of the 8th Marcel Grossmann Meeting on General Relativity, ed. by T. Piran (World Scientific, Singapore, 1999) pp. 741–743

    Google Scholar 

  16. S. Brandt, K. Camarda, E. Seidel, R. Takahashi: in preparation (unpublished)

    Google Scholar 

  17. R. A. Matzner, M. F. Huq, D. Shoemaker: Phys. Rev. D59, 024015 (1999)

    ADS  MathSciNet  Google Scholar 

  18. M. Shibata, T. Nakamura: Phys. Rev. D52, 5428 (1995)

    ADS  MathSciNet  Google Scholar 

  19. T. W. Baumgarte, S. L. Shapiro: Physical Review D59, 024007 (1999)

    ADS  MathSciNet  Google Scholar 

  20. M. Alcubierre et al.: Phys. Rev. D61, 041501 (R) (2000)

    ADS  MathSciNet  Google Scholar 

  21. M. Alcubierre et al.: Phys. Rev. D62, 124011 (2000)

    ADS  MathSciNet  Google Scholar 

  22. J. York: In Sources of Gravitational Radiation, ed. by L. Smarr (Cambridge University Press, Cambridge, England, 1979)

    Google Scholar 

  23. M. Alcubierre et al.: Phys. Rev. D62, 044034 (2000)

    ADS  MathSciNet  Google Scholar 

  24. D. Garfinkle, C. Gundlach: Class. Quantum Grav. 16, 4111 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. J. Balakrishna et al.: Class. Quantum Grav. 13, L135 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Arbona, C. Bona, J. Massó, J. Stela: Phys. Rev. D60, 104014 (1999)

    ADS  Google Scholar 

  27. L. Smarr, J. York: Phys. Rev. D17, 2529 (1978)

    ADS  MathSciNet  Google Scholar 

  28. M. Alcubierre et al.: Class. Quantum Grav. 17, 2159 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. M. Alcubierre et al.: in preparation (unpublished)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alcubierre, M., Brügmann, B., Pollney, D., Seidel, E., Takahashi, R. (2003). Gauge Conditions for Long-Term Numerical Black Hole Evolution With or Without Excision. In: Fernández-Jambrina, L., González-Romero, L.M. (eds) Current Trends in Relativistic Astrophysics. Lecture Notes in Physics, vol 617. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36973-2_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-36973-2_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01983-1

  • Online ISBN: 978-3-540-36973-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics