Dipolar Effects in Magnetic Nanostructures

  • Jean-Claude Serge Lévy
  • Abdelwahab Ghazali
Part of the Lecture Notes in Physics book series (LNP, volume 593)


The medium scale magnetic arrangement of nanostructures results from the competition of long ranged interactions such as dipolar ones with short ranged interactions such as exchange and anisotropy. A brief report of the experimental situation and of related numerical simulations is given with attention to the specific patterns such as vortices and pin-shaped domains which are observed in nanostructures. A new method of determining the magnetic ground state of a 2D nanostructure is reported. The indirect influence of the lattice symmetry on the magnetic symmetry by means of long ranged interactions is demonstrated to occur as observed experimentally. Different approximate solutions of the ground state equation are classified according to their level of approximation with evidence for topological defects such as vortices, spirals and labyrinths as metastable solutions in 2D samples. Vortices are shown to be stable in nanostructures. The relative stability of pin-shaped domains is demonstrated.


Equatorial Plane Dipolar Interaction Topological Defect Uniaxial Anisotropy Lattice Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Allenspach, J. Magn. Magn. Mater. 129, 160 (1994)CrossRefADSGoogle Scholar
  2. 2.
    T. Duden, E. Bauer: Phys. Rev. Lett. 77, 2308 (1996)CrossRefADSGoogle Scholar
  3. 3.
    A. Vaterlaus, C. Stamm, U. Maier, M.G. Pini, P. Politi, D. Pescia, Phys. Rev. Lett. 84, 2247 (2000)CrossRefADSGoogle Scholar
  4. 4.
    M. Hehn, K. Ounadjela, J.-P. Bucher, F. Rousseaux, D. Decanini, B. Bartenlian, C. Chappert: Science 272, 1782 (1996)CrossRefADSGoogle Scholar
  5. 5.
    A. Lebib, S. Li, M. Natali et al.: J. Appl. Phys. 89, 3892 (2001) S. Li, D. Peayrade, M. Natali, A. Lebib, Y. Chen: Phys. Rev. Lett. 86, 1102 (2001)CrossRefADSGoogle Scholar
  6. 6.
    A. Hubert, R. Schäfer: Magnetic Domains (Springer, Berlin 1998)Google Scholar
  7. 7.
    W. Wulfhekel, J. Kirschner: Appl. Phys. Lett. 75, 1944 (1999)CrossRefADSGoogle Scholar
  8. 8.
    A.B. MacIsaac, J.P. Whitehead, K. De’Bell, P.H. Poole: Phys. Rev. Lett. 77, 739 (1996)CrossRefADSGoogle Scholar
  9. 9.
    A. Hucht, K.D. Usadel: J. Magn. Magn. Mater. 156, 423 (1996)CrossRefADSGoogle Scholar
  10. 10.
    J. Sasaki, F. Matsubara: J. Phys. Soc. Jpn. 66, 2138 (1997)CrossRefADSGoogle Scholar
  11. 11.
    E.Y. Vedmedenko, A. Ghazali, J.-C.S. Lévy: Surf. Sci. 402–404, 391 (1998) E.Yu. Vedmedenko, A. Ghazali, J.-C.S. Lévy: Phys. Rev. B 59, 3329 (1999) E.Yu. Vedmedenko, H.P. Oepen, A. Ghazali, J.-C.S. Lévy, J. Kirschner: Phys. Rev. Lett. 84, 5884 (2000)CrossRefGoogle Scholar
  12. 12.
    G.S. Kandaurova, A.E. Sviderskii: Sov. Phys. JETP 70, 684 (1990)Google Scholar
  13. 13.
    M.V. Logunov, M.V Gerasimov: Phys. Met. Metallogr., to be publishedGoogle Scholar
  14. 14.
    T. Suzuki, L. Gal: Jpn. J. Appl. Phys. 18, 1609 (1979)CrossRefADSGoogle Scholar
  15. 15.
    J.M. Kosterlitz, D.J. Thouless: J. Phys. C f6, 1181 (1973)CrossRefADSGoogle Scholar
  16. 16.
    J.N. Chapman: J. Phys. D 17, 623 (1984)CrossRefADSGoogle Scholar
  17. 17.
    A.C. Daykin, J.P. Jakubovics: J. Appl. Phys. 80, 3408 (1996)CrossRefADSGoogle Scholar
  18. 18.
    R.E. Dunin-Borkowski, M.R. McCartney, B. Kardynal, D.J. Smith: J. Appl. Phys. 84, 374 (1998)CrossRefADSGoogle Scholar
  19. 19.
    A.K. Petford-Long, B. Dieny: private communicationsGoogle Scholar
  20. 20.
    R.P. Cowburn et al.: Phys. Rev. Lett. 83, 1042 (1999)CrossRefADSGoogle Scholar
  21. 21.
    W. Schepper, H. Kubota, G. Reiss: ‘Analysis of the disturbing influence of stray fields in very small MRAM cells by computer simulation’, this conferenceGoogle Scholar
  22. 22.
    J.-C.S. Levy: Phys. Rev. B 63, 104409 (2001)CrossRefADSGoogle Scholar
  23. 23.
    M.M. Midzor, P.E. Wigen, D. Pelekhov, W. Chen, P.C. Hammel, M.L. Roukes: J. Appl. Phys. 87, 6493 (2000); P.E. Wigen et al.: ‘Magnetic resonance force microscopy in microscopic magnetic systems’, this conferenceCrossRefADSGoogle Scholar
  24. 24.
    G.T. Rado: Phys. Rev. 83, 821 (1951)zbMATHCrossRefADSGoogle Scholar
  25. 25.
    R.B. Dingle: Asymptotic Expansion: Their Derivation, Interpretation (Academic Press, London 1973)Google Scholar
  26. 26.
    Y. Yafet, E.M. Gyorgy: Phys. Rev. B 38, 9145 (1988)CrossRefADSGoogle Scholar
  27. 27.
    P. Molho, J.L. Porteseil, Y Souche, J Gouzerh, J.-C.S. L'evy: J. Appl. Phys. 61, 4188 (1987)CrossRefADSGoogle Scholar
  28. 28.
    H.A.M. van den Berg: J. Appl. Phys. 60, 1104 (1986)CrossRefADSGoogle Scholar
  29. 29.
    M. Seul, D. Andelman: Science 267, 476 (1995)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Jean-Claude Serge Lévy
    • 1
  • Abdelwahab Ghazali
    • 2
  1. 1.Laboratoire de Physique Théorique de la Matière CondenséeUniversité Paris 7Paris Cedex 05France
  2. 2.Groupe de Physique des Solides, UMR 7588 CNRSUniversités Paris 6 et Paris 7Paris Cedex 05France

Personalised recommendations