Advertisement

Dynamics of Magnetization Reversal in Models of Magnetic Nanoparticles and Ultrathin Films

  • Per Arne Rikvold
  • Gregory Brown
  • Steven J. Mitchell
  • M. A. Novotny
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 593)

Abstract

We discuss numerical and theoretical results for models of magnetization switching in nanoparticles and ultrathin films. The models and computational methods include kinetic Ising and classical Heisenberg models of highly anisotropic magnets which are simulated by dynamic Monte Carlo methods, and micromagnetics models of continuum-spin systems that are studied by finite-temperature Langevin simulations. The theoretical analysis builds on the fact that a magnetic particle or film that is magnetized in a direction antiparallel to the applied field is in a metastable state. Nucleation theory is therefore used to analyze magnetization reversal as the decay of this metastable phase to equilibrium. We present numerical results on magnetization reversal in models of nanoparticles and films, and on hysteresis in magnets driven by oscillating external fields.

Keywords

Ising Model Magnetization Reversal Heisenberg Model Direct Monte Carlo Simulation Nucleation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Dormann, D. Fiorani, eds.: Magnetic Properties of Fine Particles, (North Holland, New York 1992)Google Scholar
  2. 2.
    M.F. Crommie, C.P. Lutz, D.M. Eigler: Science 262, 218 (1993).CrossRefADSGoogle Scholar
  3. 3.
    A.D. Kent, T.M. Shaw, S. von Molnár, D.D. Awschalom: Science 262, 1250 (1993)CrossRefADSGoogle Scholar
  4. 4.
    A.D. Kent, S. von Molnár, S. Gider, D. D. Awschalom: J. Appl. Phys. 76, 6656 (1994)CrossRefADSGoogle Scholar
  5. 5.
    W.W. Pai, J.D. Zhang, J.F. Wendelken, R.J. Warmack: J. Vacuum Science & Technology B 15, 785 (1997)CrossRefADSGoogle Scholar
  6. 6.
    S. Gider et al.: Appl. Phys. Lett. 69, 3269 (1996)CrossRefADSGoogle Scholar
  7. 7.
    H.N. Bertram: Theory of Magnetic Recording (Cambridge U. Press, Cambridge 1994)CrossRefGoogle Scholar
  8. 8.
    S.Y. Chou, M.S. Wei, P.R. Krauss, P.B. Fischer: J. Appl. Phys. 76, 6673 (1994)CrossRefADSGoogle Scholar
  9. 9.
    M.A. Novotny, P.A. Rikvold: ‘Magnetic Particles’. In: Encyclopedia of Electrical and Electronics Engineering, V ol. 12, ed. by J.G. Webster (Wiley, New York 1999) p. 64Google Scholar
  10. 10.
    P.A. Rikvold, M.A. Novotny, M. Kolesik, H.L. Richards: ‘Nucleation Theory of Magnetization Reversal in Nanoscale Ferromagnets’. In: Dynamical Phenomena in Unconventional Magnetic Systems, ed. by A.T. Skjeltorp, D. Sherrington (Kluwer, Dordrecht 1998) p. 307, and references thereinGoogle Scholar
  11. 11.
    U. Nowak: ‘Thermally Activated Reversal in Magnetic Nanostructures’. In: Annual Review of Computational Physics IX, ed. by D. Stauffer (World Scientific, Singapore 2001) p. 105CrossRefGoogle Scholar
  12. 12.
    G. Brown, M.A. Novotny, P.A. Rikvold: Phys. Rev. B 64, in press (2001), e-print cond-mat/0101477Google Scholar
  13. 13.
    J.J.M. Ruigrok, R. Coehorn, S.R. Cumpson, H.W. Kestern: J. Appl. Phys. 87, 5398 (2000)CrossRefADSGoogle Scholar
  14. 14.
    D. Weller, M.F. Doerner: Ann. Rev. Mater. Sci. 30, 611 (2000)CrossRefADSGoogle Scholar
  15. 15.
    T. Chang, J.-G. Zhu, J.H. Judy: J. Appl. Phys. 73, 6716 (1993).CrossRefADSGoogle Scholar
  16. 16.
    H.L. Richards, S.W. Sides, M.A. Novotny, P.A. Rikvold: J. Magn. Magn. Mater. 150, 37 (1995)CrossRefADSGoogle Scholar
  17. 17.
    P.A. Rikvold, B.M. Gorman: ‘Recent Results on the Decay of Metastable Phases’. In: Annual Reviews of Computational Physics I, ed. by D. Stauffer (World Scientific, Singapore 1994) p. 149, and references thereinGoogle Scholar
  18. 18.
    L. Néel: Ann. Géophys. 5, 99 (1949)Google Scholar
  19. 19.
    W.F. Brown: J. Appl. Phys. 30, 130S (1959)CrossRefGoogle Scholar
  20. 20.
    W.F. Brown: Phys. Rev. 130, 1677 (1963)CrossRefADSGoogle Scholar
  21. 21.
    M. Kolesik, M.A. Novotny, P.A. Rikvold: Phys. Rev. B 56, 11790 (1997)CrossRefADSGoogle Scholar
  22. 22.
    M. Kolesik, M.A. Novotny, P.A. Rikvold: Mater. Res. Soc. Conf. Proc. Ser. 492, 313 (1998)Google Scholar
  23. 23.
    P.A. Rikvold, M. Kolesik: J. Stat. Phys. 100, 377 (2000)zbMATHCrossRefGoogle Scholar
  24. 24.
    H.J. Hug et al.: J. Appl. Phys. 79, 5609 (1996)CrossRefADSGoogle Scholar
  25. 25.
    R.H. Koch et al.: Phys. Rev. Lett. 84, 5419 (2000).CrossRefADSGoogle Scholar
  26. 26.
    H.L. Richards, M.A. Novotny, P.A. Rikvold: Phys. Rev. B 54, 4113 (1996)CrossRefADSGoogle Scholar
  27. 27.
    H.L. Richards et al.: Phys. Rev. B 55, 11521 (1997)CrossRefADSGoogle Scholar
  28. 28.
    H. Tomita, S. Miyashita: Phys. Rev. B 46, 8886 (1992)CrossRefADSGoogle Scholar
  29. 29.
    P.A. Rikvold, H. Tomita, S. Miyashita, S.W. Sides: Phys. Rev. E 49, 5080 (1994)CrossRefADSGoogle Scholar
  30. 30.
    J.S. Langer: Ann. Phys. (N.Y.) 41, 108 (1967)CrossRefADSGoogle Scholar
  31. 31.
    J.S. Langer: Ann. Phys. (N.Y.) 54, 258 (1969)CrossRefADSGoogle Scholar
  32. 32.
    N.J. Günther, D.A. Nicole, D.J. Wallace: J. Phys. A 13, 1755 (1980)CrossRefADSGoogle Scholar
  33. 33.
    M. Kolesik, M.A. Novotny, P.A. Rikvold: Phys. Rev. Lett. 80, 3384 (1998)CrossRefADSGoogle Scholar
  34. 34.
    M. Kolesik, M.A. Novotny, P.A. Rikvold, D.M. Townsley: ‘Projected Dynamics for Metastable Decay in Ising Models’. In: Computer Simulation Studies in Condensed Matter Physics X, ed. by D.P. Landau, K.K. Mon, H.-B. Schüttler (Springer, Berlin 1998), p. 246Google Scholar
  35. 35.
    M.A. Novotny, M. Kolesik, P.A. Rikvold: Computer Phys. Commun. 121–122, 330 (1999)CrossRefGoogle Scholar
  36. 36.
    R.H. Schonmann: Commun. Math. Phys. 161, 1 (1994)zbMATHCrossRefADSMathSciNetGoogle Scholar
  37. 37.
    A.N. Kolmogorov: Bull. Acad. Sci. USSR, Phys. Ser. 1, 355 (1937)Google Scholar
  38. 38.
    W.A. Johnson, R.F. Mehl: Trans. Am. Inst. Mining and Metallurgical Engineers 135, 416 (1939)Google Scholar
  39. 39.
    M. Avrami: J. Chem. Phys. 7, 1103 (1939); 8, 212 (1940); 9, 177 (1941)CrossRefADSGoogle Scholar
  40. 40.
    J. Lee, M.A. Novotny, P.A. Rikvold: Phys. Rev. E 52, 356 (1995)CrossRefADSGoogle Scholar
  41. 41.
    N. Metropolis et al.: J. Chem. Phys. 21, 1087 (1953)CrossRefADSGoogle Scholar
  42. 42.
    R. J. Glauber: J. Math. Phys. 4, 294 (1963)zbMATHCrossRefADSMathSciNetGoogle Scholar
  43. 43.
    M.A. Novotny: Phys. Rev. Lett. 74, 1 (1995); erratum 75, 1424 (1995)CrossRefADSGoogle Scholar
  44. 44.
    A.B. Bortz, M.H. Kalos, J.L. Lebowitz: J. Comput. Phys. 17, 10 (1975)CrossRefADSGoogle Scholar
  45. 45.
    G.H. Gilmer: J. Crystal Growth 35, 15 (1976)CrossRefADSGoogle Scholar
  46. 46.
    M.A. Novotny: Computers in Physics 9, 46 (1995)CrossRefADSGoogle Scholar
  47. 47.
    D.A. Garanin: Phys. Rev. B 55, 3050 (1997)CrossRefADSGoogle Scholar
  48. 48.
    W.F. Brown: Micromagnetics (Wiley, New York 1963)Google Scholar
  49. 49.
    A. Aharoni: Introduction to the Theory of Ferromagnetism (Clarendon, Oxford 1996)Google Scholar
  50. 50.
    L. Greengard, V. Rohklin: J. Comput. Phys. 73, 325 (1987)zbMATHCrossRefADSMathSciNetGoogle Scholar
  51. 51.
    L. Greengard: Science 265, 909 (1994)CrossRefADSMathSciNetGoogle Scholar
  52. 52.
    D. Hinzke, U. Nowak: Comput. Phys. Commun. 122, 334 (1999)CrossRefADSGoogle Scholar
  53. 53.
    U. Nowak, D. Hinzke: J. Appl. Phys. 85, 4337 (1999)CrossRefADSGoogle Scholar
  54. 54.
    E. D. Boerner, H. N. Bertram: IEEE Trans. Magn. 33, 3052 (1997)CrossRefADSGoogle Scholar
  55. 55.
    J. A. Ewing: Proc. R. Soc. London 33, 21 (1881)CrossRefGoogle Scholar
  56. 56.
    S.W. Sides, P.A. Rikvold, M.A. Novotny: Phys. Rev. E 59, 2710 (1999)CrossRefADSGoogle Scholar
  57. 57.
    Y.-L. He, G.-C. Wang: Phys. Rev. Lett. 70, 2336 (1993)CrossRefADSGoogle Scholar
  58. 58.
    Q. Jiang, H.-N. Yang, G.-C. Wang: Phys. Rev. B 52, 14911 (1995)CrossRefADSGoogle Scholar
  59. 59.
    J.H. Suen, J. L. Erskine: Phys. Rev. Lett. 78, 3567 (1997)CrossRefADSGoogle Scholar
  60. 60.
    J.H. Suen, M.H. Lee, G. Teeter, J. L. Erskine: Phys. Rev. B 59, 4249 (1999)CrossRefADSGoogle Scholar
  61. 61.
    S.W. Sides, P.A. Rikvold, M. A. Novotny: J. Appl. Phys. 83, 6494 (1998)CrossRefADSGoogle Scholar
  62. 62.
    S.W. Sides, P.A. Rikvold, M.A. Novotny: Phys. Rev. E 57, 6512 (1998)CrossRefADSGoogle Scholar
  63. 63.
    T. Tomé, M.J. de Oliveira: Phys. Rev. A 41, 4251 (1990)CrossRefADSGoogle Scholar
  64. 64.
    J.F.F. Mendes, E.J.S. Lage: J. Stat. Phys. 64, 653 (1991)zbMATHCrossRefMathSciNetADSGoogle Scholar
  65. 65.
    G. Korniss, C.J. White, P.A. Rikvold, M.A. Novotny: Phys. Rev. E 63, 016120 (2001)CrossRefADSGoogle Scholar
  66. 66.
    W.S. Lo, R.A. Pelcovits: Phys. Rev. A 42, 7471 (1990)CrossRefADSGoogle Scholar
  67. 67.
    M. Acharyya, B.K. Chakrabarti: ‘Ising System in Oscillating Field: Hysteretic Response’. In: Annual Reviews of Computational Physics I, ed. by D. Stauffer (World Scientific, Singapore 1994) p. 107Google Scholar
  68. 68.
    M. Acharyya, B. Chakrabarti: Phys. Rev. B 52, 6550 (1995)CrossRefADSGoogle Scholar
  69. 69.
    M. Acharyya: Phys. Rev. E 56, 1234 (1997)CrossRefADSGoogle Scholar
  70. 70.
    M. Acharyya: Phys. Rev. E 56, 2407 (1997)CrossRefADSGoogle Scholar
  71. 71.
    M. Acharyya: Phys. Rev. E 58, 179 (1998)CrossRefADSGoogle Scholar
  72. 72.
    B. Chakrabarti, M. Acharyya: Rev. Mod. Phys. 71, 847 (1999)CrossRefADSGoogle Scholar
  73. 73.
    G. M. Buendía, E. Machado: Phys. Rev. E 58, 1260 (1998)CrossRefADSGoogle Scholar
  74. 74.
    G. M. Buendía, E. Machado: Phys. Rev. B 61, 14686 (2000)CrossRefADSGoogle Scholar
  75. 75.
    S.W. Sides, P.A. Rikvold, M.A. Novotny: Phys. Rev. Lett. 81, 834 (1998)CrossRefADSGoogle Scholar
  76. 76.
    M. Zimmer: Phys. Rev. E 47, 3950 (1993)CrossRefADSGoogle Scholar
  77. 77.
    Q. Jiang, H.-N. Yang, G.-C. Wang: J. Appl. Phys. 79, 5122 (1996)CrossRefADSGoogle Scholar
  78. 78.
    G. Grinstein, C. Jayaprakash, Y. He: Phys. Rev. Lett. 55, 2527 (1985)CrossRefADSMathSciNetGoogle Scholar
  79. 79.
    H. Fujisaka, H. Tutu, P.A. Rikvold: Phys. Rev. E 63, 036109 (2001); erratum 63, 059903 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Per Arne Rikvold
    • 1
    • 2
  • Gregory Brown
    • 2
    • 3
  • Steven J. Mitchell
    • 1
    • 2
  • M. A. Novotny
    • 4
  1. 1.Center for Materials Research and Technology and Department of PhysicsFlorida State UniversityTallahasseeUSA
  2. 2.School of Computational Science and Information TechnologyFlorida State UniversityTallahasseeUSA
  3. 3.Center for Computational SciencesOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Department of Physics and AstronomyMississippi State UniversityMississippi StateUSA

Personalised recommendations