Skip to main content

Noise-Induced Transitions in Physics, Chemistry, and Biology

  • Chapter
Book cover Noise-Induced Transitions

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 15))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 7

  1. S. Kabashima, T. Kawakubo: Observation of a noise induced phase transition in a parametric oscillator. Phys. Lett. A70, 375 (1979)

    ADS  Google Scholar 

  2. S. Kabashima, S. Kogure, T. Kawakubo, T. Okada: Oscillatory to nonoscillatory transition due to external noise in parametric oscillator. J. Appl. Phys. 50, 6296 (1979)

    Article  ADS  Google Scholar 

  3. S. Kabashima: Observation of phase transition due to external fluctuations, (unpublished)

    Google Scholar 

  4. J.J. Tyson: The Belousov-Zhabotinskii Reaction, Lecture Notes in Biomath., Vol.10 (Springer, Berlin, Heidelberg, New York 1976)

    MATH  Google Scholar 

  5. J.J. Tyson, P.C. Fife: Target patterns in a realistic model of the Belousov-Zhabotinskii reaction. J. Chem. Phys. 73, 2224 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  6. M.L. Smoes: “Chemical Waves in the Oscillatory Zhabotinskii System, A Transition from Temporal to Spatio-Temporal Organization,” in Dynamics of Synergetic Systems, Springer Ser. Synergetics, Vol.6, ed. by H. Haken (Springer, Berlin, Heidelberg, New York 1980) p.80

    Google Scholar 

  7. A. Winfree: The Geometry of Biological Time, Biomathematics, Vol.8 (Springer, Berlin, Heidelberg, New York 1980)

    MATH  Google Scholar 

  8. P. De Kepper, W. Horsthemke: Etude d’une réaction chimique périodique. Influence de la lumiére et transitions induites par un bruit externe. C. R. Acad. Sci. Paris C 287, 251 (1978)

    Google Scholar 

  9. P. De Kepper, W. Horsthemke: “Experimental Evidence of Noise-Induced Transition in an Open Chemical System,” in Synergetics. Far from Equilibrium, Springer Ser. Synergetics, Vol.3, ed. by A. Pacault, C. Vidal (Springer, Berlin, Heidelberg, New York 1979) p.61

    Google Scholar 

  10. P. De Kepper: Contribution á 1’étude expérimentale de systémes dissipatifs chimique: réactions oscillantes de Briggs-Rauscher et de Belousov-Zhabotinskii. Thèse de Doctorat, Université de Bordeaux I (1978)

    Google Scholar 

  11. R. Graham, H. Haken: Laser light — first example of a second-order phase transition far away from thermal equilibrium. Z. Phys. 237, 31 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  12. V. De Giorgio, M.O. Scully: Analogy between the laser threshold region and a second-order phase transition. Phys. Rev. A2, 1170 (1970)

    ADS  Google Scholar 

  13. H. Haken: Generalized Ginzburg-Landau equations for phase transition like phenomena in lasers, nonlinear optics, hydrodynamics and chemical reactions. Z. Phys. B 21, 105 (1975)

    Article  ADS  Google Scholar 

  14. F.T. Arrechi: “Experimental Aspects of Transition Phenomena in Quantum Optics,” in Order and Fluctuations in Equilibrium and Nonequilibrium Statistical Mechanics, ed. by G. Nicolis, G. Dewel, J.W. Turner (Wiley, New York 1981)

    Google Scholar 

  15. H.M. Gibbs, S.L. McCall, T.N.C. Venkatesan: Differential gain and bistability using a sodium-filled Fabry-Perot interferometer. Phys. Rev. Lett. 36, 1135 (1976)

    Article  ADS  Google Scholar 

  16. G.P. Agarwal, H.J. Carmichael: Optical bistability through nonlinear dispersion and absorption. Phys. Rev. Al9, 2074 (1979)

    ADS  Google Scholar 

  17. R. Bonifacio, L.A. Lugiato: Optical bistability and cooperative effects in resonance fluorescence. Phys. Rev. A l8, 1129 (1978)

    Article  ADS  Google Scholar 

  18. A.R. Bulsara, W.C. Schieve, R.F. Gragg: Phase transitions induced by white noise in bistable optical systems. Phys. Lett. A68, 294 (1978)

    ADS  Google Scholar 

  19. R.F. Gragg: Stochastic Switching in Absorptive Optical Bistability. Ph. D. Thesis, University of Texas, Austin (1981)

    Google Scholar 

  20. F.T. Arrechi: “Transition Phenomena in Nonlinear Optics,” in Stochastic Non linear Systems in Physics, Chemistry, and Biology, Springer Ser. Synergetics, Vol.8, ed. by L. Arnold, R. Lefever (Springer, Berlin, Heidelberg, New York 1981) p.222

    Google Scholar 

  21. J. de la Rubia, M.G. Velarde: Further evidence of a phase transition induced by external noise. Phys. Lett. A69, 304 (1978)

    ADS  Google Scholar 

  22. R. Levins: The effect of random variations of different types on population growth. Proc. Natl. Acad.. Sci. USA 62, 1055 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  23. R.C. Lewontin, D. Cohen.: On population growth in a randomly varying environment. Proc. Natl. Acad. Sci. USA 62, 1056 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  24. D. Ludwig: Optimal harvesting of a randomly fluctuating resource I: application of perturbation methods.. SIAM J. Appl.. Math. 37, 166 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  25. D. Ludwig, J.M. Varah: Optimal harvesting of a randomly fluctuating resource II: numerical methods and results. STAM J. Appl. Math. 37, 185 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  26. B.S. White: The effect of a rapidly-fluctuating random environment on systems of interacting species. SIAM J. Appl. Math. 32, 666 (1977)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. R. Lefever, W. Horsthemke: Bistability in fluctuating environments. Implications in tumor immunology. Bull. Math. Biol. 41, 469 (1979)

    MATH  Google Scholar 

  28. D. Ludwig, D.D. Jones, C.S. Hol1ing: Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol. 47, 315 (1978)

    Article  Google Scholar 

  29. R.P. Garay, R. Lefever: A kinetic approach to the immunology of cancer: stationary state properties of effector-target cell reactions. J. Theor. Biol. 73, 417 (1978)

    Article  MathSciNet  Google Scholar 

  30. R. Lefever, R. Garay: “Local Description of Immune Tumor Rejection”, in Biomathematics and Cell Kinetics, ed. by A.J. Valleron, P.D.M. Macdonald (North-Holland, Amsterdam 1978) p.333

    Google Scholar 

  31. W. Horsthemke, R. Lefever: Phase transition induced by external noise. Phys. Lett. A64, 19 (1977)

    ADS  Google Scholar 

  32. R. Lefever: “Dynamics of Cell-Mediated Immune Response,” in Dynamics of Synergetic Systems, Springer Ser. Synergetics, Vol.6, ed. by H. Haken (Springer, Berlin, Heidelberg, New York 1980) p.205

    Google Scholar 

  33. R. Lefever: “Noise-Induced Transitions in Biological Systems,” in Stochastic Nonlinear Systems in Physios, Chemistry, and Biology, Springer Ser. Synergetics, Vol.8, ed. by L. Arnold, R. Lefever (Springer, Berlin, Heidelberg, New York 1981) p.127

    Google Scholar 

  34. J.C. Micheau, S. Boue, E. Van der Donckt: Theoretical kinetic analysis of biphotonic processes: evidence for the unusual but feasible occurrence of multistationary states and chemical oscillations. J. Chem. Soc. Faraday Trans. 2 78, 39 (1982)

    Article  Google Scholar 

  35. J.C. Micheau, W. Horsthemke, R. Lefever: Sensitivity of biphotonic systems to light intensity fluctuations: experimental evidence in the thermoluminescence of fluorescein in boric acid glass. J. Chem Phys. (to appear)

    Google Scholar 

  36. F. Lesclaux, S. Ohayon, J. Joussot-Dubien: Contribution á l’étude de la luminescence différée de colorants en milieu rigide. Photoionisation de la fluoresceine dans 1’acide borique par un processus a deux photons. Photochem. Photobiol. 11, 401 (1970)

    Article  Google Scholar 

  37. E. Walentynowicz: Thermoluminescence of fluorescein in boric acid glass. Acta Phys. Pol. 29, 713 (1966)

    Google Scholar 

  38. M.H. Dung, J.J. Kozak: Analysis of mechanisms for the cyclic cleavage of water by visible light. J. Photochem. 16, 121 (1981)

    Article  Google Scholar 

  39. A. Nitzan, J. Ross: Oscillations, multiple steady states, and instabilities in illuminated systems. J. Chem. Phys. 59, 241 (1973)

    Article  ADS  Google Scholar 

  40. A. Nitzan, P. Ortoleva, J. Ross: Symmetry breaking instabilities in illuminated systems. J. Chem. Phys. 60, 3194 (1974)

    Google Scholar 

  41. C.L. Creel, J. Ross: Multiple stationary states and hysteresis in a chemical reaction. J. Chem. Phys. 65, 3779 (1976)

    Article  ADS  Google Scholar 

  42. R. Lefever, W. Horsthemke: Multiple transitions induced by light intensity fluctuations in illuminated chemical systems. Proc. Natl. Acad. Sci. USA 76, 2490 (1979)

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Noise-Induced Transitions in Physics, Chemistry, and Biology. In: Noise-Induced Transitions. Springer Series in Synergetics, vol 15. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-36852-3_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-36852-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11359-1

  • Online ISBN: 978-3-540-36852-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics