Skip to main content

A ‘Fine’ Chemical Industry for Life Science Products: Green Solutions to Chemical Challenges

  • Chapter
  • First Online:
Process Integration in Biochemical Engineering

Abstract

Modern biotechnology, in combination with chemistry and process technology, is crucial for the development of new clean and cost effective manufacturing concepts for fine-chemical, food specialty and pharmaceutical products. The impact of biocatalysis on the fine-chemicals industry is presented, where reduction of process development time, the number of reaction steps and the amount of waste generated per kg of end product are the main targets. Integration of biosynthesis and organic chemistry is seen as a key development.

The advances in bioseparation technology need to keep pace with the rate of development of novel bio-or chemocatalytic process routes with revised demands on process technology. The need for novel integrated reactors is also presented. The necessary acceleration of process development and reduction of the time-to-market seem well possible, particularly by integrating high-speed experimental techniques and predictive modelling tools. This is crucial for the development of a more sustainable fine-chemicals industry.

The evolution of novel ‘green’ production routes for semi-synthetic antibiotics (SSAs) that are replacing existing chemical processes serves as a recent and relevant case study of this ongoing integration of disciplines.We will also show some challenges in this specific field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Datar R, Rosén C-G (1990) Downstream process economics. In: Asenjo JA (ed) Separation processes in biotechnology. Marcel Dekker, New York

    Google Scholar 

  2. Bruggink A (1998) Growth and efficiency in the (fine) chemical industry, Chimica Oggi 16:44–47

    Google Scholar 

  3. Straathof AJJ, Adlercreutz P (eds) (2000) Applied biocatalysis, 2nd edn. Harwood Academic, Reading, UK

    Google Scholar 

  4. Faber K (2000) Biotransformations in organic chemistry, 4th edn. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  5. Litjens MJJ, Straathof AJJ, Jongejan JA, Heijnen JJ (1999) Synthesis of primary amides by lipase-catalyzed amidation of carboxylic acids with ammonium salts in an organic solvent. Chem Commun 1255–1256

    Google Scholar 

  6. Diender MB, Straathof AJJ, van der Does T, Heijnen JJ (2001) Feasibility of a one-pot shortcut route from penicillin G to amoxicilin in anhydrous organic solvent (in press)

    Google Scholar 

  7. Wichmann R, Wandrey C, Bückmann AF, Kula MR (1981) Biotechnol Bioeng 23: 2789–2802

    Article  CAS  Google Scholar 

  8. Seelbach K, Riebel B, Hummel W, Kula MR, Tishkov VI, Egorov AM, Wandrey C, Kragl U (1996) A novel efficient regeneration method of NADPH using a new formate dehydrogenase. Tetrahedron Lett 37:1377–1380

    Article  CAS  Google Scholar 

  9. Schenkels P, de Vries S, Straathof AJJ (2001) Scope and limitation of the use of nicotinoprotein alcohol dehydrogenase for the coenzyme-free production of enantiopure fine-chemicals. Biocat Biotransform (in press)

    Google Scholar 

  10. Sybesma WFH, Straathof AJJ, Jongejan JA,P ronk JT, Heijnen JJ (1998) Reductions of 3-oxo esters by baker’s yeast: current status. Biocat Biotransf 16:95–134

    Article  CAS  Google Scholar 

  11. Stewart JD (2000) Organic transformations catalyzed by engineered yeast cells and related systems. Curr Opin Biotechnol 11:363–368

    Article  CAS  Google Scholar 

  12. Freeman A, Lilly MD (1988) Effect of processing parameters on the feasibility and operational stability of immobilized viable microbial cells. Enzyme Microb Technol 23:335–345

    Article  Google Scholar 

  13. van der Wielen LAM, Wesselingh JA (2002) Design booklet for separation processes (in press)

    Google Scholar 

  14. Den Hollander JL, Straathof AJJ, van der Wielen LAM (2001) Design of fractionating enzymatic reactors for hydrolysis reactions (in press)

    Google Scholar 

  15. Den Hollander JL, Aversente A, Diender MB, Straathof AJJ, van der Wielen LAM (2001) Enzymatic penicillin G hydrolysis in discretely contacted countercurrent water-butyl acetate biphasic systems (in press)

    Google Scholar 

  16. Den Hollander JL, Zomerdijk M, Straathof AJJ, van der Wielen LAM (2001) A continuous countercurrent enzyme reactor for the hydrolysis of penicillin G. (in press)

    Google Scholar 

  17. Keurentjes JTF, Voermans FJM (1997) In: Collins AN, Sheldrake GN, Crosby J (eds) Chirality in industry II: development in the manufacture and applications of optically active compounds. Wiley, Chichester

    Google Scholar 

  18. Overdevest PEM, van der Padt A, Keurentjes JTF, van’t Riet K (1999). In: Scamehorn JF, Harwell JH (eds) Surfactant based separations: science and technology. ACS symposium series 740, ACS, Washington DC

    Google Scholar 

  19. Mazzotti M, Storti G, Morbidelli M (1997) Supercritical fluid simulated moving bed (SF-SMB) chromatography. J Chrom A 786:309

    Article  CAS  Google Scholar 

  20. Jensen TB, Billiet HAH, van der Wielen LAM (1999) Method of substantially continuously separating two compounds using a (simulated) moving bed. UK Patent 2826684

    Google Scholar 

  21. Jensen TB, Reijns T, Billiet HAH, van der Wielen LAM (2000) A novel SMB method for reduced solvent consumption. J Chrom A 873:149–162

    Article  CAS  Google Scholar 

  22. Houwing J, Jensen TB, van Hateren SH, Billiet HAH, van der Wielen LAM (2001) Salt gradients in SMB for protein separations. AIChE J (in press)

    Google Scholar 

  23. Lebreton B, Zomerdijk M, Ottens M, van der Wielen LAM (1999) Effect of impurities upon crystallisation kinetics of β-lactam antibiotics. Proc Annual Meeting AIChE, November 1999

    Google Scholar 

  24. Ottens M, Lebreton B, Zomerdijk M, Bruinsma D, van der Wielen LAM (2001) Crystallization kinetics of Ampicillin. Ind Eng Chem Res 40:821–4827 25. ▪

    Article  CAS  Google Scholar 

  25. Wesselingh JA, Krishna R (2000) Mass transfer in multi-component mixtures. Delft University Press

    Google Scholar 

  26. van Halsema FED, van der Wielen LAM, Luyben KCAM (1997) The modelling of carbon dioxide aided extraction of carboxylic acids from aqueous solutions. Ind Eng Chem Res 37:748–758

    Article  Google Scholar 

  27. Greve A, Kula M-R (1991) Cost structure and estimation for the recycling of salt in a protein extraction process. Bioproc Eng 13:173–177 29. ▪

    Article  Google Scholar 

  28. Liu C-L, Kamei D-T, Wang JA, Wang DIC, Blankenschtein D (1998) Separation of proteins and viruses using aqueous two-phase micellar systems. J Chrom B 711:127–138

    Article  CAS  Google Scholar 

  29. Presson J, Nystrom L, Ageland H, Tjerneld F (1999) Purification of recombinant proteins using thermoseparatig aqueous two-phase system and polymer recycling. J Chem Technol Biotechnol 74:28–243

    Google Scholar 

  30. van Berlo M, Ottens M, Luyben KCAM, van der Wielen LAM (2000) Feasible boundaries of aqueous two-phase systems with NH3 and CO2 as recyclable volatile salts. Biot Bioeng 70:65–71

    Article  Google Scholar 

  31. de Vroom E, Kers EE, Heijnen JJ (1998) Method for separation of solid compounds in suspension. European Patent EP0997199A1

    Google Scholar 

  32. Jauregi P, Hoeben M, van der Lans RGJM, Kwant G, van der Wielen LAM (2000) Selective interfacial fractionation of near identical crystal mixtures (in press)

    Google Scholar 

  33. Jauregi P, van der Lans RGJM, Hoeben M, van der Wielen LAM (2000) Selective interfacial fractionation of near identical particle mixtures. UK Patent Application

    Google Scholar 

  34. Braas GMF, Walker SG, Lyddiatt A (2000) Recovery in aqueous two-phase systems of nanoparticles applied as surrogate mimics for viral gene therapy vectors. J Chrom B 743:409–420

    Article  CAS  Google Scholar 

  35. Oyama K (1987) Enzymatic synthesis of aspartame in organic synthesis. In: Laane C, Tramper J, Lilly MD (eds) Biocatalysis in organic media. Elsevier, Amsterdam, pp 209–224 38. ▪

    Google Scholar 

  36. Johansson HO, Karlström G, Tjerneld F, Haynes CA (1999) Driving forces for phase separation and partitioning in aqueous two-phase systems. J Chrom B 711:3

    Google Scholar 

  37. van der Wielen LAM, Rudolph SJG (1999) On the generalization of thermodynamic properties for selection of bioseparation processes. J Chem Biochem Technol 74:275–283

    Google Scholar 

  38. van Buel MJ, Gude M, van der Wielen LAM, Luyben KCAM (1997) Gradient elution in CPC. J Chrom 773:13–22

    Article  Google Scholar 

  39. Jansen ML, Hofland GW, Houwers J, Straathof AJJ, van der Wielen LAM, Luyben KCAM, van den Tweel WJJ (1996) Effect of pH and concentration on column dynamics of weak electrolyte ion exchange processes. AIChE J 42:1925–1937

    Article  CAS  Google Scholar 

  40. van der Wielen LAM, Diepen PJ, Houwers J, Luyben KCAM (1996) A countercurrent adsorptive reactor for acidifying bioconversions. Chem Eng Sci 51:2315–2325

    Article  Google Scholar 

  41. Paiva AL, Malcata FX (1997) Integration of reaction and separation with lipases-an overview. J Mol Cat B-Enzym 3:99–109

    Article  CAS  Google Scholar 

  42. Mazzotti M, Kruglov A, Neri B, Gelosa D, Morbidelli M (1996) A continuous chromatographic reactor: SMBr Chem Eng Sci 51:1827–1836

    CAS  Google Scholar 

  43. Kawase M, Suzuki TB, Inoue K, Yoshimoto K, Hashimoto K (1996) Increased esterification conversion by application of the simulated moving-bed reactor. Chem Eng Sci 51:2971–2976

    Article  CAS  Google Scholar 

  44. Mensah P, Carta G (1999) Adsorptive control of water in esterification with immobilized enzymes. Continuous operation in a periodic counter-current reactor. Biotechnol Bioeng 66:137–146

    Article  CAS  Google Scholar 

  45. Gude MT, Meuwisen HHJ, van der Wielen LAM, Luyben KCAM (1996) Partition coefficients and solubilities of α-amino acids in aqueous 1-butanol solutions. Ind Chem Eng Res 35:4700–4712 49. ▪

    Article  CAS  Google Scholar 

  46. Prokopakis GJ, Asenjo JA (1990) Synthesis of downstream processes. In: Asenjo JA (ed) Separation processes in biotechnology. Marcel Dekker, New York 51. ▪ 52. ▪

    Google Scholar 

  47. Sheldon RA (1993) Chirotechnology. Marcel Dekker, New York 54. ▪

    Google Scholar 

  48. Bruggink A (1996) Biocatalysis and process integration in the synthesis of semi-synthetic antibiotics. Chimia 50:431–432

    CAS  Google Scholar 

  49. Bruggink A (2000), Green solutions for chemical challenges; biocatalysis in the synthesis of semi-synthetic antibiotics. In: Zwanenburg B, Mikolajczyk M, Kielbasinsky P (eds) Enzymes in action. NATO sciences series 1/33, Kluwer Academic, pp 449–458

    Google Scholar 

  50. Bruggink A, Roos EC, de Vroom E (1998) Penicillin acylase in the industrial production of b-lactam antibiotics. Org Process Res Dev 2:128–133

    Article  CAS  Google Scholar 

  51. Diender MB, Straathof AJJ, van der Wielen LAM, Ras C, Heijnen JJ (1998) Feasibility of the thermodynamically controlled synthesis of amoxicillin. J Mol Catalysis B: Enzymatic 5:249–253

    Article  CAS  Google Scholar 

  52. Schroën CGPH, Nierstrasz VA, Kroon PJ, Bosma R, Janssen AEM, Beeftink HH, Tramper J (1999) Thermodynamically controlled synthesis of β-lactam antibiotics. Enzyme Microb Technol 24:498–506

    Article  Google Scholar 

  53. Nierstrasz VA, Schroën CGPH, Bosma R, Kroon PJ, Beeftink HH, Janssen AEM, Tramper J (1999) Thermodynamically controlled synthesis of Cefamandole, biocatalysis and bio-transformation 17:209–223

    CAS  Google Scholar 

  54. Diender MB, Straathof AJJ, van der Does T, Zomerdijk M, Heijnen JJ (2000) Course of pH during the formation of amoxicillin by a suspension-to-suspension reaction. Enzyme Microb Technol 27:576–582

    Article  CAS  Google Scholar 

  55. Kemperman GJ, de Gelder R, Dommerholt FJ, Raemakers-Franken PC, Klunder AJH, Zwanenburg B (1999) Clathrate type complexation of cephalosporins with β-naphthol. Chemistry 2163–2168

    Google Scholar 

  56. Kemperman GJ, de Gelder R, Dommerholt FJ, Raemakers-Franken PC, Klunder AJH, Zwanenburg B (1999) Design of inclusion compounds of cephalosporin antibiotics (in press)

    Google Scholar 

  57. Storti G, Mazzott M, Morbidelli M, Carra S (1993) Robust design of binary countercurrent adsorption processes. AIChE J 39:471–492

    Article  CAS  Google Scholar 

  58. Taylor R, Krishna R (1993) Multi-component mass transfer. Wiley, New York

    Google Scholar 

  59. Seader JD, Henley EJ (1998) Separation process principles. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bruggink, A., Straathof, A.J.J., van der Wielen, L.A.M. (2003). A ‘Fine’ Chemical Industry for Life Science Products: Green Solutions to Chemical Challenges. In: von Stockar, U., et al. Process Integration in Biochemical Engineering. Advances in Biochemical Engineering/Biotechnology, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36782-9_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-36782-9_3

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43630-0

  • Online ISBN: 978-3-540-36782-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics